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1 Introduction

Modular graph functions are building blocks for one-loop scattering amplitudes in closed-

string theories at the one-loop level. They have been thoroughly investigated by D’Hoker,

Green, Vanhove and other authors during the last couple of years [1–13] and arise from

Feynman graphs of certain conformal scalar fields on the torus. Each modular graph

function depends on the modular parameter of the torus and its modular invariance is

inherited from the underlying closed-string setup. While the computation of their asymp-

totic expansion1 is itself cumbersome, they exhibit a variety of mathematical structures:

modular graph functions are related by a network of algebraic identities and related to

holomorphic Eisenstein series by differential equations with respect to the modular param-

eter. Even more, they satisfy certain eigenvalue equations involving the modular invariant

Laplace operator.

Most interestingly for the purpose of this article, however, a first connection between

elliptic multiple polylogarithms (as defined in refs. [14–16]) and modular graph functions

was established in ref. [6]: the latter were written as special values of infinite sums of

single-valued multiple polylogarithms, and these infinite sums are proposed in the refer-

ence to be a single-valued analogue of elliptic multiple polylogarithms.2 This connection

extends an observation made for genus-zero (tree-level) open- and closed-string amplitudes:

closed-string tree amplitudes are conjectured to be obtained by acting with the so-called

single-valued projection on the multiple zeta values appearing in their open-string coun-

terparts [17–19]. The single-valued projection maps generic multiple zeta values to those

instances which descend from single-valued polylogarithms at genus zero [20, 21].

At genus one (one-loop level), Enriquez’s elliptic multiple zeta values [22] were shown to

capture the low-energy expansion of the open superstring [23–25]. The results of [6] suggest

to expect that modular graph functions are single-valued versions of Enriquez’s elliptic

multiple zeta values. However, the precise matching and thus the relation between open-

and closed-string results at one-loop level is an open problem: first, the closed-string [6]

and open-string literature [23–25] use different notions of elliptic polylogarithms. Second,

the dependence of modular graph functions and elliptic multiple zeta values on the modular

parameters of the respective genus-one surface is realized in rather different languages.

In the current article we are going to bridge the leftover gap between one-loop open-

and closed-string amplitudes before integration over the respective modular parameters.

We propose a setup which allows to relate certain building blocks of open-string ampli-

tudes with modular graph functions. This accumulates evidence for a conjectural elliptic

generalization of the single-valued projection known from genus zero. Simultaneously, this

leads to a conjectural formalism to explicitly construct modular graph functions starting

from open-string quantities. The results thus obtained pass a variety of consistency checks

and match previous partial expressions.

1As the modular parameter τ tends to i∞ such that a homology cycle of the Riemann surfaces pinches.
2It is not demonstrated that the infinite sums studied in ref. [6] can be called single-valued elliptic

multiple polylogarithms in the usual mathematical sense. This would be true if one can write them as finite

linear combinations of products of elliptic multiple polylogarithms and their complex conjugates.
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The main idea is to define open-string graph functions within an abelian version of

one-loop open-string amplitudes. Despite the fact that the permissible string spectrum

of Type-I open-superstring theory does not contain an abelian gauge boson [26], we will

consider a kinematical building block of the putative amplitude, which is non-trivial and

well-defined for auxiliary abelian particles. In order to implement the abelian character of

the auxiliary particles, the integration regions for open-string punctures are symmetrized

in a convenient manner. The symmetrized open-string integrals of the abelian setup are the

key to lining up the properties of the open-string genus-one Green function with its closed-

string counterpart. In particular, the graphical organization of the low-energy expansion

of open- and closed-string amplitudes in terms of open-string and modular graph functions

agrees, which allows for direct comparison between constituents. This includes a matching

of the respective differential equations in the modular parameter on the open- and closed-

string side.

1.1 Summary of results

The notion of a single-valued projection applies to a variety of situations [27]. The most

common examples are multiple zeta values (MZVs),

ζn1,n2,...,nr :=
∞∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nrr , ni ∈ N+, nr ≥ 2 , (1.1)

of weight n1+n2+ . . .+nr and depth r, which can be represented as multiple polylogarithms

evaluated at unit argument. In contrast, single-valued MZVs3 descend from single-valued

multiple polylogarithms at unit argument [21]. As explained in the reference, the single-

valued projection formally denoted as

sv(ζn1,...,nr) = ζsv
n1,...,nr (1.2)

maps generic MZVs (1.1) to their single-valued counterparts, e.g.

ζsv
2k = 0 , ζsv

2k+1 = 2ζ2k+1 , k ∈ N+ (1.3)

ζsv
3,5 = −10ζ3ζ5 , ζsv

3,5,3 = 2ζ3,5,3 − 2ζ3ζ3,5 − 10ζ2
3ζ5 .

As will be reviewed in the next section, the single-valued projection of MZVs appears

naturally in relating tree-level scattering amplitudes of open and closed strings: the single-

valued map acts on the MZVs arising in the low-energy expansion of open-string disk

integrals and yields the closed-string integral over a punctured sphere. Correspondingly, it

would be desirable to identify a similar map called “esv” for the elliptic version of multiple

zeta values ω (to be defined and discussed below)

esv(ω(n1, . . . , nr |τ)) = ωesv(n1, . . . , nr |τ) (1.4)

at the one-loop level. As will be shown in this article, one-loop open- and closed-string

amplitudes — expressed as open-string and modular graph functions, respectively — can

3While the concept of single-valuedness is well defined for a function, the notion is — by slight abuse of

nomenclature — also used for MZVs which are numbers.
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single-valued
projection

elliptic
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projection?

Figure 1. Context of a tentative generalization “esv” of the single-valued projection to genus one.

be taken as a starting point to propose an analogous single-valued projection of elliptic

multiple zeta values (eMZVs), see figure 1. Accordingly, we are going to describe operations

on open-string graph functions in suitable presentations, which conjecturally yield modular

graph functions as their one-loop closed-string counterparts,

esv

(
open-string

graph function

)
=

(
closed-string mo-

dular graph function

)
. (1.5)

As will be detailed below, the present formulation of the operations in esv is in general

ill-defined, as it is not compatible with the shuffle multiplication law of certain iterated

Eisenstein integrals. Still, the conjecture eq. (1.5) is well defined for the leading terms in

the expansion of both sides around the cusp, and for the complete expansions of modular

graph functions that evaluate to non-holomorphic Eisenstein series. Moreover, it is highly

non-trivial that there seem to exist rather natural representations of the open-string input,

which yield modular graph functions beyond non-holomorphic Eisenstein series under the

map esv.

We will provide examples of the correspondence eq. (1.5), up to and including the

seventh subleading order in the low-energy expansion. In particular, starting from eq. (1.5),

we will establish a new connection between building blocks of open- and closed-string four-

point amplitudes

esv Mopen
4 (sij | − 1

τ ) = M closed
4 (sij |τ) . (1.6)

These functions of the modular parameters τ of the underlying Riemann surfaces result

from integrating over the open- and closed-string punctures and yield the respective build-

ing blocks for amplitudes upon integration over τ . We will furthermore provide evidence

that the planar open-string integral on the left-hand side can be replaced by any of its

non-planar counterparts, irrespective on how the four state insertions are distributed over

the boundaries of the worldsheet.

It is important to mention that a way to produce a single-valued projection of eMZVs

(and therefore of open-string graph functions) already exists in the literature: it is based

on their representation in terms of iterated integrals of Eisenstein series (as will be ex-

plained later in section 2), followed by the construction given in Francis Brown’s papers [28]

– 3 –



J
H
E
P
0
1
(
2
0
1
9
)
1
5
5

and [29]. Brown’s construction maps iterated integrals of Eisenstein series to certain

modular-invariant real-analytic functions whose coefficients are single-valued MZVs. So

far, however, it remains conjectural that modular graph functions are contained in the im-

age of this elliptic single-valued projection. We postpone the investigation of the relation

between our single-valued projection and Brown’s map to a sequel of the present work.

1.2 Outline

Several techniques and previous results entering the construction of this work are reviewed

in section 2. First, a short review is given on the single-valued projection in the context

of regular multiple zeta values, which appear at string tree level. Second, A- and B-cycle

versions of eMZVs will be reviewed. As it will turn out, modular transformations are

facilitated by representing A- and B-cycle elliptic multiple zeta values in the language of

iterated integrals over Eisenstein series. Modular graph functions including some of their

properties are introduced briefly.

In section 3, open-string graph functions are introduced. While starting from the so-

called A-cycle graph functions, it will turn out that finally B-cycle functions are the objects

necessary for the construction of modular graph functions.

Once open-string graph functions are properly introduced, the comparison with mod-

ular graph functions can happen, and it is presented in section 4. Using several examples,

we will finally arrive at a set of rules relating open-string graph functions to modular graph

functions. This is first of all done at the level of the relations and differential equations in

the modular parameter satisfied by the respective graph functions, see subsection 4.1 and

subsection 4.2. From the resulting conjectures, modular graph functions can be obtained

from their open-string counterparts up to integration constants. Moreover, since eMZVs

are related to what is believed to be a single-valued version thereof in subsection 4.3, the

construction is believed to constitute a representation of an elliptic single-valued projection.

Still, in view of the issues with the shuffle multiplication of iterated Eisenstein integrals

detailed in subsection 4.3, parts of the operations in the tentative elliptic single-valued

projection await a reformulation in the future.

Finally, non-planar analogues of the above open-string graph functions are introduced

in section 5, generalizing our main result eq. (1.6) to admit the integrals for arbitrary

non-planar four-point open-string amplitudes on the left-hand side.

Various details and examples can be found in the appendices. In appendix A we provide

a table allowing to translate our graphical notation to different notations for modular graph

functions appearing in earlier articles on the subject.

2 Basics

2.1 Single-valued projection at tree level

In this section, we provide a brief review of the tree-level relations between open- and

closed-string amplitudes and identify them as the single-valued projection in eq. (1.2).

Tree amplitudes among n massless open-string states can be represented by moduli-

space integrals over punctured disks accompanied by partial amplitudes of the Yang–Mills

– 4 –
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field theory [30, 31]. The moduli-space integrals read

Z(ρ(1, 2, . . . , n) |σ(1, 2, . . . , n)) :=

∫
D(ρ(1),ρ(2),...,ρ(n))

dz1 dz2 · · · dzn
vol(SL(2,R))

∏n
i<j |zij |−sij

σ(z12z23 . . . zn−1,nzn,1)
,

(2.1)

where zi are the positions of the punctures on the boundary of a disk. The integral Z(· | ·)
in eq. (2.1) is labeled by two permutations σ, ρ ∈ Sn of the external legs 1, 2, . . . , n which

govern the cyclic product of zij := zi− zj in the denominator (with σ(zij) = zσ(i),σ(j)) and

the integration domains

D(1, 2, . . . , n) = {(z1, z2, . . . , zn) ∈ Rn, −∞ < z1 < z2 < . . . < zn <∞} . (2.2)

The division by the inverse volume vol(SL(2,R)) of the conformal Killing group can be

implemented by dropping any three integrations, fixing the respective positions such as

(z1, zn−1, zn) = (0, 1,∞), and inserting the compensating Jacobian |z1,n−1z1,nzn−1,n|. Fi-

nally, the disk integrals eq. (2.1) depend on the lightlike momenta kj of the external states

j = 1, 2, . . . , n subject to momentum conservation
∑n

j=1 kj = 0 through the dimensionless

Mandelstam variables4

sij = −α
′

2
ki · kj (2.3)

involving the inverse string tension α′.

Tree-level amplitudes among massless closed-string states, in turn, comprise moduli-

space integrals over punctured spheres,

W (ρ(1,2, . . . ,n) |σ(1,2, . . . ,n)) :=π3−n
∫
Cn

d2z1 d2z2 · · ·d2zn
vol(SL(2,C))

∏n
i<j |zij |

−2sij

σ(z12z23 . . . zn,1) ρ(z̄12z̄23 . . . z̄n,1)
,

(2.4)

where both permutations ρ, σ ∈ Sn label a cyclic product of zij or their complex conju-

gates. The inverse volume vol(SL(2,C)) suppresses three complex integrations and the

normalization factor π3−n is chosen for later convenience.

The low-energy regime of string amplitudes is encoded in the Taylor expansion of

the disk and sphere integrals around small values of the inverse string tension α′ and

thus small values of the Mandelstam variables (2.3). The w’th order in the low-energy

expansion beyond the respective field-theory amplitudes gives rise to MZVs eq. (1.1) of

weight w [33, 34], for instance

s12Z(1, 2, 3, 4 |1, 2, 4, 3) = exp
( ∞∑
n=2

ζn
n

[
sn12 + sn23 − (s12 + s23)n

])
(2.5)

s12W (1, 2, 3, 4 |1, 2, 4, 3) = exp
(

2
∞∑
k=1

ζ2k+1

2k + 1

[
s2k+1

12 + s2k+1
23 − (s12 + s23)2k+1

])
. (2.6)

4Throughout this work, we will follow the normalization convention for α′ which is tailored to the

closed-string setup. The fully accurate normalization of open-string quantities can be restored by rescaling

α′ → 4α′ [32].
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Generic examples of multiplicity n ≥ 5 also involve MZVs of higher depth r ≥ 2 [17, 35],

and the explicit polynomial dependence on the Mandelstam invariants can for instance be

computed5 via polylogarithm manipulations [31], the Drinfeld associator [42] or a Berends–

Giele recursion for a putative effective field theory of bi-colored scalars [43]. A machine-

readable form of such results is available for download on the website [44].

Closed-string integrals (2.4) can in principle be assembled from squares of open-string

integrals (2.1) through the Kawai–Lewellen–Tye (KLT) relations [45]. However, the KLT

formula obscures the cancellation of various MZVs from the open-string constituents: from

the all-order conjectures of ref. [17], closed-string integrals (2.4) are expected to be single-

valued open-string integrals [18, 19],

W (ρ(1, 2, . . . , n) |σ(1, 2, . . . , n)) = svZ(ρ(1, 2, . . . , n) |σ(1, 2, . . . , n)) . (2.7)

The MZVs in the image of the single-valued projection sv(. . .) are precisely the single-

valued MZVs described in eqs. (1.2) and (1.3) above — in agreement with the four-point

examples eqs. (2.5) and (2.6). As can be seen from eq. (2.7), the sv-projection trades the

integration domain of the disk integral eq. (2.1) for an antiholomorphic cyclic denominator

of a sphere integral (2.4).

2.2 A- and B-cycle eMZVs and iterated Eisenstein integrals

Several versions of eMZVs have been used in different contexts: when represented as special

values of multiple elliptic polylogarithms (defined by Brown and Levin in [16]), they have

made an appearance in the evaluation of the sunrise integral, see for instance [46–55], while

when represented as the coefficients of the elliptic associator (defined by Enriquez in [56]),

they have made an appearance in the one-loop open-string amplitudes. The latter is the

context that we consider in this article; therefore our conventions are inspired by the string-

theory setup in refs. [23–25]. A further comprehensive reference on eMZVs is Matthes’s

PhD thesis [57]. A-cycle eMZVs are defined as iterated integrals over the unit interval

ωA(n1, n2, . . . , nr |τ) :=

∫
0≤z1≤z2≤...≤zr≤1

f (n1)(z1, τ) dz1 f
(n2)(z2, τ) dz2 . . . f

(nr)(zr, τ) dzr , (2.8)

where the integration path is taken to be on the real line.6 Using the parametrization

of the torus in figure 2, the integration domain in eq. (2.8) corresponds to the A-cycle

and justifies the term “A-cycle eMZVs”. Accordingly, iterated integrals along the B-cycle

connecting the points 0 and τ in figure 2 give rise7 to B-cycle eMZVs

ωB(n1, n2, . . . , nr |τ) :=

∫
0≤z1≤z2≤...≤zr≤τ

f (n1)(z1, τ) dz1 f
(n2)(z2, τ) dz2 . . . f

(nr)(zr, τ) dzr . (2.9)

5Earlier work on α′-expansions at n = 5, 6, 7 points include [36–39], and the representation of five-point

integrals as hypergeometric functions has been exploited in the all-order methods of refs. [40, 41].
6Homotopy-invariant completions of the integrands in eq. (2.8) are known from ref. [16].
7We think of eq. (2.9) as an integral over the straight path [0, τ ] ⊂ C. Again, these integrals are not

homotopy invariant, and their relation with the homotopy invariant version known from ref. [16] is more

subtle than in the A-cycle case. The interested reader is referred to [57].

– 6 –
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0

τ τ + 1

1

Im(z)

Re(z)

Figure 2. Parametrization of a torus as a lattice C/(Z+τZ) with modular parameter τ in the

upper half plane and complex coordinate z ∼= z+1 ∼= z+τ . The homology cycle drawn in red is

mapped to the unit interval (0, 1) and referred to as the A-cycle. Accordingly, the second homology

cycle mapped to the path from 0 to τ is known as the B-cycle.

The doubly-periodic integration kernels f (n) in eqs. (2.8) and (2.9) are defined by their

generating series [23, 24],

exp

(
2πiα

Im(z)

Im(τ)

)
θ′(0, τ)θ(z + α, τ)

θ(z, τ)θ(α, τ)
=
∞∑
n=0

αn−1f (n)(z, τ) , (2.10)

where θ(z, τ) denotes the odd Jacobi theta function, and the simplest instances are

f (0)(z, τ) = 1 as well as f (1)(z, τ) = ∂z log θ(z, τ) + 2πi Im(z)
Im(τ) . We refer to the number

r of entries of eMZVs and the quantity n1 + n2 + . . . + nr as their length and weight, re-

spectively. Furthermore, the number of non-zero entries nj 6= 0 of eMZVs will be referred

to as their depth.

B-cycle eMZVs can be obtained from A-cycle eMZVs by the modular S-transformation,

which sends τ → − 1
τ ,

ωA(n1, n2, . . . , nr |− 1
τ ) = τn1+n2+...+nr−r ωB(n1, n2, . . . , nr |τ) . (2.11)

Since the restriction of the kernels f (n) to the real line admits a Fourier-expansion in

q = e2πiτ spelt out in subsection 3.3.3 of ref. [23], the same is true for A-cycle eMZVs in

eq. (2.8), and one can prove that the coefficients are given by Q[(2πi)±1]-linear combinations

of MZVs [22].

By contrast, B-cycle eMZVs have the more complicated behavior near the cusp τ → i∞
(or q → 0) [22, 58],

ωB(n1, n2, . . . , nr |τ) =

r∑
l=1−n1−···−nr

τ l
∞∑
k=0

bk,l(n1, n2, . . . , nr) q
k , n1, nr 6= 1 , (2.12)

where the coefficients bk,l(n1, n2, . . . , nr) are Q[(2πi)±1]-linear combinations of MZVs. In

the resulting expansion for S-transformed A-cycle eMZVs

ωA(n1, n2, . . . , nr |− 1
τ ) =

n1+···+nr∑
l=1−r

(2πiτ)l
∞∑
k=0

ck,l(n1, n2, . . . , nr)q
k , n1, nr 6= 1 , (2.13)

it is crucial for later purposes to note that the coefficients ck,l(n1, n2, . . . , nr) are Q-linear

(rather than Q[(2πi)±1]-linear) combinations of MZVs. As will be proven in appendix C,

all extra powers of π can been absorbed into powers of 2πiτ in eq. (2.13).

– 7 –
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2.2.1 Elliptic iterated integrals

In the same way as MZVs descend from multiple polylogarithms at unit argument, A-cycle

eMZVs defined in eq. (2.8) are special cases of elliptic iterated integrals subject to the

recursive definition [23]

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z |τ) :=

∫ z

0
dt f (n1)(t− a1, τ) Γ ( n2 ... nr

a2 ... ar ; t |τ) (2.14)

with initial condition Γ (; z |τ) = 1, integration path along the real line and real upper limit

z. Accordingly,

ωA(n1, n2, . . . , nr |τ) = Γ ( nr ... n2 n1
0 ... 0 0 ; 1 |τ) . (2.15)

The integrals defined in eq. (2.14) above are not homotopy invariant. However, as discussed

in ref. [16] (see also subsection 3.1 of ref. [23]), every integral Γ ( n1 n2 ... nr
a1 a2 ... ar ; z |τ) can be

lifted to a homotopy invariant integral. Thus, despite the lack of homotopy invariance,

various manipulations are still allowed for the integrals defined in eq. (2.14). In particular,

as will become important for later computations, differential equations in ai acting on

the iterated elliptic integrals defined in eq. (2.14) can be used to eliminate any additional

occurrences of the argument z on the left of the semicolon [23], for instance

Γ ( nz ; z |τ) = (−1)n Γ ( n0 ; z |τ) (2.16)

Γ ( 1 0 1
z 0 0 ; z |τ) = 2 Γ ( 0 0 2

0 0 0 ; z |τ) + Γ ( 0 2 0
0 0 0 ; z |τ)− 2 Γ ( 0 1 1

0 0 0 ; z |τ) + ζ2 Γ ( 0
0 ; z |τ) . (2.17)

2.2.2 Iterated Eisenstein integrals

Given that the differential equation in appendix C.2 allows to relate eMZVs to Eisenstein

series, it is natural to represent them in terms of iterated integrals in τ (or q = e2πiτ ), see

ref. [24] for the detailed formalism of iterated Eisenstein integrals,8

E(k1, k2, . . . , kr; τ) := 2πi

∫ i∞

τ
dτr

Gkr(τr)

(2πi)kr
E(k1, k2, . . . , kr−1; τr)

= −
∫ q

0
dlog qr

Gkr(qr)

(2πi)kr
E(k1, k2, . . . , kr−1; qr) (2.18)

= (−1)r
∫

0≤q1≤q2≤...≤qr≤q

dlog q1 · · · dlog qr
Gk1(q1)

(2πi)k1
· · · Gkr(qr)

(2πi)kr

8In ref. [24], a slightly different convention for iterated Eisenstein integrals has been employed. Named

γ and γ0, they differ from the objects E and E0 defined in eqs. (2.18) and (2.19) by powers of 2πi and can

be related via

γ(k1, k2, . . . , kr; τ) = (2πi)k1+···+kr−2r E(k1, k2, . . . , kr; τ)

γ0(k1, k2, . . . , kr; τ) = (2πi)k1+···+kr−2r E0(k1, k2, . . . , kr; τ) .

Please see appendix D.1 for further details of our conventions.
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E0(k1, k2, . . . , kr; τ) := 2πi

∫ i∞

τ
dτr

G0
kr(τr)

(2πi)kr
E(k1, k2, . . . , kr−1; τr)

= −
∫ q

0
dlog qr

G0
kr(qr)

(2πi)kr
E0(k1, k2, . . . , kr−1; qr) (2.19)

= (−1)r
∫

0≤q1≤q2≤...≤qr≤q

dlog q1 · · · dlog qr
G0
k1

(q1)

(2πi)k1
· · ·

G0
kr(qr)

(2πi)kr
.

The recursion starts with E(; τ) = E0(; τ) = 1, and the non-constant parts of Eisenstein

series are defined as

G0
2n(τ) = G2n(τ)− 2 ζ2n , G0(τ) = G0

0(τ) = −1 (2.20)

with n ∈ N+. Our conventions for Eisenstein series Gk are listed in appendix D.1, and we

will interchangeably refer to the argument of Gk, G0
k and their iterated integrals by τ or

q. For both E(k1, k2, . . . , kr; τ) and E0(k1, k2, . . . , kr; τ) in eqs. (2.18) and (2.19), we will

refer to the number of non-zero entries (kj 6= 0) as the depth of the respective iterated

Eisenstein integral (similar to the terminology for eMZVs).

Throughout this article, the endpoint divergences of the above integrals as q1 → 0

are understood to be shuffle-regularized through the tangential-basepoint prescription de-

scribed in ref. [59] with the net effect
∫ q

0
dq1
q1

= log q. The iterated Eisenstein integrals

E0(k1, . . . , kr; q) with k1 6= 0 do not need to be regularized and have the following Fourier-

expansion (cf. eq. (4.62) of ref. [24]):

E0(k1, 0
p1−1, k2, 0

p2−1, . . . , kr, 0
pr−1; q) = (−2)r

( r∏
j=1

1

(kj − 1)!

)
(2.21)

×
∞∑

mi,ni=1

mk1−1
1 mk2−1

2 . . .mkr−1
r qm1n1+m2n2+...+mrnr

(m1n1)p1(m1n1 +m2n2)p2 . . . (m1n1 +m2n2 + . . .+mrnr)pr
,

where kj 6= 0 and 0p is a shorthand for p successive zeros 0, 0, . . . , 0. The conversion of

A-cycle eMZVs to iterated Eisenstein integrals therefore provides an easy way to find their

functional dependence on q and, by the linear independence of E with different labels [29,

60], exposes their relations [24].

The iterated Eisenstein integrals in eq. (2.18) are linear combinations of products of

powers of τ and the objects

G
[
j1 j2 ... jr
k1 k2 ... kr

; τ
]

:=

∫ i∞

τ
dτr τ

jr
r Gkr(τr)G

[
j1 ... jr−1

k1 ... kr−1
; τr

]
, (2.22)

where ki are even positive integers, ji are non-negative integers and G [ ; τ ] = 1. The

results of Brown [59] on the integrals eq. (2.22) will be used to express the modular S-

transformations E(k1, k2, . . . , kr;− 1
τ ) in terms of iterated Eisenstein integrals at argument

τ , powers of τ and Q[(2πi)±1]-linear combinations of MZVs. For ki 6= 0, one recovers

G
[

0 0 ... 0
k1 k2 ... kr ; τ

]
=

r∏
j=1

(2πi)kj−1 E(k1, k2, . . . , kr; τ) , (2.23)
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and the general dictionary between the two types of iterated Eisenstein integrals eqs. (2.18)

and (2.22) is described in section 3.3 below. The number r of integrations in eq. (2.22) will

be referred to as the depth of Brown’s iterated Eisenstein integrals, and it is compatible

with the notion of depth in their representation via E in eq. (2.18).

Given a suitable regularization scheme, all objects defined as iterated integrals natu-

rally satisfy shuffle relations. This applies in particular to eMZVs, elliptic iterated integrals

and iterated Eisenstein integrals. Shuffle relations can be neatly explained by reorganizing

the higher-dimensional integration domains and read for the example of iterated Eisen-

stein integrals:

E(0, 0; τ) E(4; τ) = E(0, 0, 4; τ) + E(0, 4, 0; τ) + E(4, 0, 0; τ) . (2.24)

2.3 Modular graph functions

The definition of modular graph functions [6] is motivated by the low-energy expansion of

the modular invariant integral

M closed
n (sij |τ) :=

∫
dµclosed

n (τ) exp

 n∑
i<j

sijGij(τ)

 , (2.25)

which appears in one-loop amplitudes of the closed superstring [61, 62] and gives rise to the

right-hand side of the correspondence in eq. (1.5). The Green function Gij(τ) := G(zi, zj ; τ)

on the torus is defined below, and the integration measure for n external states reads∫
dµclosed

n (τ) =
1

Im(τ)n−1

∫
T (τ)

d2z2

∫
T (τ)

d2z3 . . .

∫
T (τ)

d2zn (2.26)

with z1 = 0. The zj are to be integrated over a torus T (τ) of modular parameter τ , and

the above measure is normalized such that
∫
T (τ) d2z = Im(τ). The Green function is only

defined up to an additive function of τ , and we will employ the representative

Gij(τ) = − log

∣∣∣∣θ1(zij , τ)

η(τ)

∣∣∣∣2 − π

2 Im(τ)
(zij − z̄ij)2 , zij = zi − zj (2.27)

which vanishes upon integration over the torus∫
T (τ)

d2zi Gij(τ) = 0 . (2.28)

The low-energy expansion of eq. (2.25) can be conveniently represented graphically. After

expanding the exponential in the integrand as a power series and exchanging integration

and summation, one can associate a graph to every summand in the following way: each

integration variable of eq. (2.26) is represented by a vertex, and each Green function Gij
between vertices i and j is visualized by an edge [1, 2]

Gij(τ) =
i j . (2.29)
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Then, property eq. (2.28) implies the vanishing of one-particle reducible graphs,9 so the

simplest contributions to the low-energy expansion of eq. (2.25) stem from two-vertex

graphs with multiple edges. The associated modular graph functions are given by

D
[ ]

=

∫
dµclosed

2 G2
12, D

[ ]
=

∫
dµclosed

2 G3
12, D

[ ]
=

∫
dµclosed

2 G4
12 ,

(2.30)

and we will employ a graphical labeling for their generalizations to one-particle irreducible

graphs with multiple vertices, e.g.

D
[ ]

=

∫
dµclosed

3 G12G13G23 , D
[ ]

=

∫
dµclosed

3 G2
12G13G23 , (2.31)

D
[ ]

=

∫
dµclosed

4 G12G23G34G41 , D
[ ]

=

∫
dµclosed

5 G13G34G42G15G52G12 .

We suppress the dependence on τ in eqs. (2.30) and (2.31) as well as in later equations.

The number of edges in the graphical representation equals the weight of a modular

graph function. A translation between graphs at higher weight and their names in refs. [2,

63] is provided in table 1 in appendix A. In terms of modular graph functions, the α′-

expansion of the four-point integral eq. (2.25) reads

M closed
4 (sij |τ) = 1 + 2 D

[ ]
(s2

12 + s12s23 + s2
23) + (D

[ ]
+ 4 D

[ ]
)s12s23s13

+
1

6

(
D
[ ]

+ 9 D
[ ]2

+ 6 D
[ ])

(s2
12 + s12s23 + s2

23)2 (2.32)

+
1

12

(
D
[ ]

+ 48 D
[ ]

D
[ ]

+ 12 D
[ ]

− 12 D
[ ]

+ 16 D
[ ]

+ 14 D
[ ]

D
[ ]

− 24 D
[ ])

× s12s23s13(s2
12 + s12s23 + s2

23) +O(α′6) ,

where we have used the relations s12 = s34, s14 = s23 and s13 = s24 = −s12 − s23 among

four-particle Mandelstam variables. Since M closed
4 (sij |τ) is the only integral contributing

to the four-point amplitude, the one-loop contribution to D2wR4 operators in the effec-

tive action follows from integrating eq. (2.32) over the fundamental domain with respect

to τ [1–3]. Closed-string one-loop amplitudes for n ≥ 5 points, however, involve a variety

of additional integrals besides M closed
n (sij |τ) [10, 62–64]. Similarly, one-loop amplitudes

involving massless states of the heterotic string will involve more general integrals [65–68].

The complexity of modular graph functions is correlated with the number of loops in

its graphical representation. We will later on define a notion of depth for modular graph

functions which relates to the depth of iterated Eisenstein integrals and which is conjec-

turally bounded from above by the loop order of the graph. One-loop graphs give rise to

the simplest class of modular graph functions: these are non-holomorphic Eisenstein series,

D
[ ]

= E2 , D
[ ]

= E3 , D
[ ]

= E4 , D
[ ]

= E5 , . . . (2.33)

9One-particle reducible graphs are those which can be disconnected by removing an edge.
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which are defined by the lattice sums

Ek(τ) :=

(
Im(τ)

π

)k ∑
(m,n) 6=(0,0)

1

|m+ τn|2k
(2.34)

= ek(y)− 8y(2k − 1)!
k−1∑
j=0

(
2k − 2− j
k − 1

)
1

j!
(4y)j−k Re[E0(2k, 0, . . . , 0︸ ︷︷ ︸

2k−2−j

; q)]

with y = π Im(τ), Bernoulli numbers B2k and

ek(y) = (−1)k−1 B2k

(2k)!
(4y)k +

4(2k − 3)!

(k − 2)! (k − 1)!
ζ2k−1(4y)1−k . (2.35)

For generic modular graph functions, a lattice-sum representation generalizing the first line

of eq. (2.34) can be straightforwardly deduced from the Fourier-expansion of the Green

function eq. (2.27) with respect to Im z
Im τ [1],

Gij(τ) =
Im τ

π

∑
(m,n) 6=(0,0)

e2πi(nαij−mβij)

|m+ τn|2
, zij = αij + τβij , αij , βij ∈ R . (2.36)

However, the q-expansions of modular graph functions beyond Ek have not been spelt out

in the literature before, and we will propose new results in terms of iterated Eisenstein

integrals E0 with q-expansion eq. (2.21) in section 4.2.

2.3.1 Laurent polynomials in the zero modes

Modular graph functions associated with a one-particle irreducible graph G admit a double

expansion of the form

D[G] =

∞∑
m,n=0

cGm,n(y)qmq̄n, (2.37)

where the coefficients cGm,n(y) are Laurent polynomials in y = π Im(τ) of maximum degree

equal to the number of edges (or weight) w of G and minimum degree 1−w [69]. A variety

of results is available on the polynomial cG0,0(y) =: d[G] which describes the behavior of the

corresponding modular graph function at the cusp τ → i∞. In abuse of nomenclature, the

polynomial d[G] will be referred to as the zero mode. Apart from the zero modes ek(y) for

the polygonal graphs in eq. (2.35), the results to be compared with an open-string setup

below read [2, 11]

d
[ ]

=
2y4

14175
+
yζ3

45
+

5ζ5

12y
− ζ2

3

4y2
+

9ζ7

16y3
(2.38)

d
[ ]

=
2y5

155925
+

2y2ζ3

945
− ζ5

180
+

7ζ7

16y2
− ζ3ζ5

2y3
+

43ζ9

64y4
(2.39)

at weight four and five as well as

d
[ ]

=
38y6

91216125
+
ζ7

24y
− 7ζ9

16y3
+

15ζ2
5

16y4
− 81ζ11

128y5
(2.40)

d
[ ]

=
808y6

638512875
+
y3ζ3

4725
− yζ5

1890
+

ζ7

720y
+

23ζ9

64y3
− ζ

2
5 +30ζ3ζ7

64y4
+

167ζ11

256y5
(2.41)
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d
[ ]

=
43y6

58046625
+
yζ5

630
+

ζ7

144y
+

7ζ9

64y3
− 17ζ2

5

64y4
+

99ζ11

256y5
(2.42)

d
[ ]

=
103y6

13030875
+
y3ζ3

2025
+
yζ5

54
− ζ

2
3

90
− ζ7

360y
+

5ζ3ζ5

12y2
+

5ζ9−48ζ3
3

288y3
+

14ζ3ζ7+25ζ2
5

32y4
− 73ζ11

128y5

(2.43)

at weight six. While the above examples exclusively involve zeta values of depth10 one,

some of the modular graph functions at weight w ≥ 7 were shown to involve single-valued

MZVs at depth three, for instance11 [69]

d
[ ]

=
62y7

10945935
+

2y4ζ3

243
+

119y2ζ5

324
+

11yζ2
3

27
+

21ζ7

16
+

46ζ3ζ5

3y
+

7115ζ9

288y2
−25ζ3

3

2y2
−75ζ2

5

8y3
(2.44)

+
1245ζ3ζ7

16y3
−9(ζ3,5,3−ζ3ζ3,5)

4y4
−315ζ2

3ζ5

8y4
−9573ζ11

128y4
+

2475ζ5ζ7

32y5
+

1125ζ3ζ9

32y5
−1575ζ13

32y6

can be rewritten as

d
[ ]

=
62y7

10945935
+
y4ζsv3
243

+
119y2ζsv5

648
+

11y(ζsv3 )2

108
+

21ζsv7
32

+
23ζsv3 ζ

sv
5

6y
+

7115ζsv9
576y2

−25(ζsv3 )3

16y2

−75(ζsv5 )2

32y3
+

1245ζsv3 ζ
sv
7

64y3
−9ζsv3,5,3

8y4
−405(ζsv3 )2ζsv5

64y4
−9573ζsv11

256y4
+

2475ζsv5 ζ
sv
7

128y5
+

1125ζsv3 ζ
sv
9

128y5
−1575ζsv13

64y6
. (2.45)

It is conjectured that the coefficients of all Laurent polynomials in eq. (2.37) can be written

in terms of single-valued MZVs [69]. Finally, the zero modes in modular graph functions

associated with two-point or two-loop graphs are known in closed form [13].12

2.3.2 Relations among modular graph functions

Modular graph functions corresponding to different graphs are not independent objects:

they satisfy various relations involving (conjecturally only) single-valued MZVs, starting

with the relation proved by Don Zagier [70] (see also [3])

0 = D
[ ]

−D
[ ]

− ζ3 . (2.46)

At weight four and five, the techniques of [3, 4, 7] led to

D
[ ]

= 24 D
[ ]

− 18 D
[ ]

+ 3 D
[ ]2

(2.47)

40 D
[ ]

= 300 D
[ ]

+ 120 D
[ ]

D
[ ]

− 276 D
[ ]

+ 7ζ5 (2.48)

D
[ ]

= 60 D
[ ]

+ 10 D
[ ]

D
[ ]

− 48 D
[ ]

+ 16ζ5 (2.49)

10 D
[ ]

= 20 D
[ ]

− 4 D
[ ]

+ 3ζ5 (2.50)

30 D
[ ]

= 12 D
[ ]

+ ζ5 , (2.51)

and the complete set of weight-six relations displayed in appendix F has been identified in

ref. [11].

10The depth r of MZVs ζn1,...,nr is not a grading, thus it is often possible that the same MZV has two

different representations where the depth changes; for instance ζ3 = ζ1,2. Here, when we say that MZVs

have a certain depth, we mean that they cannot be written as polynomials in MZVs of lower depth.
11There is a typo in the coefficient of y−4 in the corresponding formula in ref. [69].
12See also D. Zagier, Evaluation of S(m,n), appendix to ref. [2].
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2.3.3 Laplace equations among modular graph functions

Various combinations and powers of modular graph functions are related through a web

of eigenvalue equations for the Laplacian ∆ := 4(Im τ)2 ∂2

∂τ∂τ̄ . While the non-holomorphic

Eisenstein series eq. (2.34) associated with one-loop graphs satisfy

(∆− k(k−1)) Ek = 0 , (2.52)

the systematics of inhomogeneous Laplace eigenvalue equations at two loops has been

described in ref. [3], leading for instance to

(∆− 2) D
[ ]

= 9 E4−E2
2 (2.53)

(∆− 6) D
[ ]

=
86

5
E5−4 E2 E3 +

ζ5

10
(2.54)

as well as

(∆− 2)(4 D
[ ]

+ D
[ ]

) = 52 E6−4 E2
3

(∆− 12)(6 D
[ ]

−D
[ ]

) = 108 E6−36 E2
3 (2.55)

(∆− 12)(6 D
[ ]

+ D
[ ]

) = 120 E6 +12 E2
3−36 E2 E4 .

Laplace equations for the tetrahedral topology at three loops13 are known from ref. [12];

we will report on a new weight-six identity involving less symmetric topologies in sec-

tion 4.2.5.

2.3.4 Cauchy–Riemann equations among modular graph functions

An essential tool in deriving relations between modular graph functions is the Cauchy–

Riemann derivative

∇ := 2i(Im τ)2∂τ (2.56)

with ∂τ := ∂
∂τ , which maps modular forms of weight (0, w) to those of weight (0, w−2). For

instance, repeated application of the Cauchy–Riemann derivative (2.56) mediates between

non-holomorphic and holomorphic Eisenstein series [7]

Γ(k)(π∇)k Ek = Γ(2k)(Im(τ))2k G2k . (2.57)

At higher loop order, the Cauchy–Riemann equations

(π∇)3 D
[ ]

=
9

10
(π∇)3 E4−6 Im(τ)4 G4 π∇E2 (2.58)

(π∇)3 D
[ ]

=
43

35
(π∇)3 E5−2(π∇E2)(π∇)2 E3−4 Im(τ)4 G4 π∇E3 (2.59)

have been instrumental to prove the weight-four and weight-five relations in eqs. (2.47)

to (2.51) [7]. The same method has been applied in [11] to derive the weight-six relations

in eq. (F.1) as well as selected relations at weight seven.

Holomorphic Eisenstein series appear in both the Cauchy–Riemann derivatives of mod-

ular graph functions and the τ -derivative eq. (C.3) of eMZVs. In subsection 4.2.1 below,

we will report on a correspondence between eqs. (2.57) to (2.59) and differential equations

of associated combinations of eMZVs.
13See [5, 8] for earlier work on Laplace equations of specific three-loop examples.
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3 An open-string setup for graph functions

In this section, we will describe an open-string setup mimicking the graphical organization

of the closed-string α′-expansion in subsection 2.3. Choosing auxiliary abelian open-string

states, the permutation symmetry of the closed-string integration measure in eq. (2.26) can

be implemented in an open-string setup. As a consequence, external abelian states allow

to rewrite the low-energy expansion of open-string integrals without one-particle reducible

graphs. Having done so, the structure of the closed-string amplitude eq. (2.32) equals that

of the four-point integral for abelian open-string states.

The open-string analogues of the modular graph functions will be referred to as “A-

cycle graph functions” and expressed in terms of the A-cycle eMZVs introduced in sub-

section 2.2. Accordingly, the results of their modular S-transformation will be referred to

as “B-cycle graph functions”, and we will introduce techniques to express them in terms

of the same iterated Eisenstein integrals as employed for A-cycle graph functions. These

expressions for B-cycle graph functions will be the starting point for proposing an analogue

of the single-valued projection from subsection 2.1 in the one-loop setup and furnish the

left-hand side of the correspondence in eq. (1.5).

3.1 Definition of A- and B-cycle graph functions

3.1.1 Review of open-string α′-expansions

The color-ordered one-loop amplitude of four non-abelian open-string states reads14

I4pt(1, 2, 3, 4 |τ) :=

∫
0≤z2≤z3≤z4≤1

dz2 dz3 dz4 exp

1

2

4∑
i<j

sijGij(τ)

 , (3.1)

with z1 = 0. The integration domain corresponds to a single-trace contribution of the non-

abelian gauge-group generators.15 The open-string Green function Gij can be obtained

from the closed-string version in eq. (2.27) by restricting to real arguments. Comparing

with the definition of elliptic iterated integrals in eq. (2.14) and the form of the integration

kernel f (1), we find

Gij(τ) = −2 Γ ( 1
0 ; zij |τ) + k(τ) = −2 Γ

(
1
zj ; zi |τ

)
− 2 Γ ( 1

0 ; zj |τ) + k(τ) . (3.2)

The iterated elliptic integrals Γ in eq. (3.2) need regularization, see e.g. section 4.2.1 of

ref. [25], which leads to the scheme-dependent quantity k(τ). The latter, however, does not

depend on zi, zj and thus cancels out from eq. (3.1) after using momentum conservation∑
i<j sij = 0. We will suppress the dependence on τ henceforth.

14Given that the normalization of α′ is tailored to the closed-string setup in this work, the expressions

for I4pt(1, 2, 3, 4) given in [23] is recovered from eq. (3.1) by rescaling α′ → 4α′. The definitions eqs. (2.3)

and (2.27) of the Mandelstam invariants and the Green function on the torus are identical to those of [3, 6,

7, 11] to match the conventions of the references for closed-string integrals and modular graph functions.

The normalization of sij and Gij chosen in [23, 25] can be obtained from eqs. (2.3) and (2.27) by rescaling

sij → −4sij and Gij → −Gij , respectively.
15The contributions from cylinder- and Möbius-strip diagrams to planar one-loop amplitudes are obtained

by integrating (3.1) over τ ∈ iR+ and τ ∈ 1
2

+ iR+, respectively [26].
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The representation eq. (3.2) of the Green function has been used to algorithmically

perform the α′-expansion of eq. (3.1) in the framework of eMZVs, leading to [23]

I4pt(1,2,3,4) =
1

6
−2s13ωA(0,1,0,0)+2ωA(0,1,1,0,0)

(
s2

12+s2
23

)
−2ωA(0,1,0,1,0)s12s23

−β5 (s3
12+2s2

12s23+2s12s
2
23+s3

23)−β2,3 s12s23(s12+s23) +O(α′4) (3.3)

with

β5 =
4

3

[
ωA(0,0,1,0,0,2)+ωA(0,1,1,0,1,0)−ωA(2,0,1,0,0,0)−ζ2ωA(0,1,0,0)

]
(3.4)

β2,3 =
ζ3

12
+

8ζ2

3
ωA(0,1,0,0)− 5

18
ωA(0,3,0,0) . (3.5)

As can be seen from the non-vanishing contribution at linear order, a single Green function

does not integrate to zero. This is true in general for the non-abelian situation: one

cannot find a constant c(τ) such that both G12(τ) + c(τ) and the cyclically inequivalent

G13(τ) + c(τ) integrate to zero simultaneously within eq. (3.1). Hence, in presence of non-

abelian open-string states, there is no analogue of the property eq. (2.28) which eliminates

one-particle reducible graphs in the expansion.

3.1.2 Open-string α′-expansion for abelian states

Switching from non-abelian to abelian open-string states amounts to democratically com-

bining all different possible integration domains in eq. (3.1) and to independently integrat-

ing each zj for j = 2, 3, 4 over the unit interval. Hence, we will be interested in symmetrized

open-string integrals

Mopen
n (sij) :=

∫
dµopen

n exp

 n∑
i<j

sijPij

 (3.6)

with z1 = 0 and an integration measure analogous to eq. (2.26):∫
dµopen

n =

∫ 1

0
dz2

∫ 1

0
dz3 . . .

∫ 1

0
dzn . (3.7)

Momentum conservation has been used to trade the Green function eq. (3.2) for16

P1j = ωA(1, 0)− Γ ( 1
0 ; zj) , Pij = ωA(1, 0)− Γ

(
1
zj ; zi

)
− Γ ( 1

0 ; zj) , (3.8)

with z1 = 0 and i, j 6= 1 (we have suppressed the dependence on τ from the notation). Note

that one can also swap the roles of zi and zj in the rightmost expression since Pij = Pji.

In analogy to the situation for the quantity k(τ) in eq. (3.2), the addition of ωA(1, 0) in

eq. (3.8) does not contribute to the open-string integral eq. (3.1) after taking momentum

conservation into account. However, including ωA(1, 0) into the propagator eq. (3.8) ensures

that an analogue of the crucial identity eq. (2.28) from the closed-string setup holds∫ 1

0
dzi Pij = 0 , (3.9)

16Note that the right-hand side of eq. (3.8) does not match the definition of Pij in ref. [25]: the propagator

of the reference does not satisfy eq. (3.9), as it does not include the term ωA(1, 0) of eq. (3.8).
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as can be checked using the definition eq. (2.14) of elliptic iterated integrals. Then, the

α′-expansion of the four-point integral eq. (3.6) for abelian open-string states will be orga-

nized in terms of one-particle irreducible graphs: each integration variable in eq. (3.7) is

represented by a vertex, and each propagator Pij in eq. (3.8) between vertices i and j is

visualized by an undirected edge

Pij =
i j . (3.10)

In these conventions, the open-string analogue of eq. (2.32) reads

Mopen
4 (sij) = 1 + 2 A

[ ]
(s2

12 + s12s23 + s2
23) + (A

[ ]
+ 4 A

[ ]
)s12s23s13

+
1

6

(
A
[ ]

+ 9 A
[ ]2

+ 6 A
[ ])

(s2
12 + s12s23 + s2

23)2

+
1

12

(
A
[ ]

+ 48 A
[ ]

A
[ ]

+ 12 A
[ ]

(3.11)

− 12 A
[ ]

+ 16 A
[ ]

+ 14 A
[ ]

A
[ ]

− 24 A
[ ])

× s12s23s13(s2
12 + s12s23 + s2

23) +O(α′6) ,

where the A-cycle graph function A[G] associated with a graph G is defined in analogy

with the corresponding modular graph function D[G]

A[G] := D[G]
∣∣∣dµclosedn → dµopenn

Gij → Pij
, (3.12)

for instance

A
[ ]

=

∫
dµopen

2 P 2
12 , A

[ ]
=

∫
dµopen

5 P13P34P42P15P52P12 .

Again, the number of edges in the graphical representation equals the weight of an A-cycle

graph function.

Finally, symmetrizing over the respective integration domains, the four-point integral

in the abelian case coincides with the symmetrization of eq. (3.3),

Mopen
4 (sij) =

∑
ρ∈S3

I4pt(1, ρ(2, 3, 4)) . (3.13)

In particular, up to the orders where I4pt(1, 2, 3, 4) is available, eq. (3.13) has been used as

a consistency check for the explicit results for the A-cycle graph functions in eq. (3.11) to

be obtained in the next section.

Although the n-point amplitude of the open superstring involves many integrals beyond

eq. (3.6) [23, 64, 66, 71, 72], we still want to study A-cycle graph function with n ≥ 5 vertices

for the sake of their parallels with modular graph functions.

3.1.3 B-cycle graph functions

The open-string integral eq. (3.1) and the measure eq. (3.7) are expressed in a parametriza-

tion of the cylinder worldsheet, where one of the boundary components is the A-cycle. By
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a modular transformation, this setup is related to a parametrization of the boundary com-

ponent through the path from 0 to τ , i.e. the B-cycle (cf. figure 2 in section 2.2). In order

to compare open-string quantities with modular graph functions below, we will study the

image of A-cycle graph functions under the S-transformation τ → − 1
τ (cf. below eq. (2.9)),

B[G] := A[G]
∣∣
τ→− 1

τ
, (3.14)

which will be referred to as B-cycle graph functions, and can be expressed in terms of B-

cycle eMZVs by eq. (2.11). Techniques for their systematic evaluation in terms of A-cycle

quantities E0(. . . ; τ) with known q-expansion eq. (2.21) will be discussed in section 3.3.

The main motivation to do this comes from the fact that the asymptotic expansion at the

cusp of B-cycle eMZVs (2.12) looks more suitable to be compared with the asymptotic

expansion of modular graph functions (2.37) than the simple Fourier expansion of their

A-cycle counterparts.

3.2 Evaluating A-cycle graph functions

The representation of the propagator in eq. (3.8) guarantees that the low-energy expansion

of open-string integrals eq. (3.6) is expressible in terms of elliptic iterated integrals. As

will be argued below, there is no bottleneck in algorithmically computing A-cycle graph

functions of arbitrary complexity by means of the techniques developed in refs. [23, 24].

3.2.1 A-cycle graph functions at weight two

The simplest non-trivial A-cycle graph function at the second order of eq. (3.11) can be

computed using the definition eq. (2.14) of elliptic iterated integrals,

A
[ ]

=

∫ 1

0
dz2

{
ωA(1, 0)2 − 2ωA(1, 0)Γ ( 1

0 ; z2) + Γ ( 1
0 ; z2)

2
}

(3.15)

= 2ωA(1, 1, 0)− 2ωA(1, 0)2 + ωA(1, 0)2 = ωA(2, 0, 0) +
5 ζ2

6
.

Here and below we have been using relations between eMZVs like 2 ωA(1, 1, 0) = 5 ζ2
6 +

ωA(1, 0)2 + ωA(2, 0, 0), which can be found on the website [73] along with various gener-

alizations up to and including length six. In eq. (3.15) as well as in all computations of

A-cycle graph functions below, the term ωA(1, 0) in the propagator eq. (3.8) avoids the

appearance of divergent eMZVs.

3.2.2 A-cycle graph functions at weight three

The A-cycle graph functions at the third order of eq. (3.11) can be computed via

A
[ ]

=

∫
dµopen

2 P 3
12

=

∫ 1

0
dz2

{
ωA(1, 0)3 − 3ωA(1, 0)2Γ ( 1

0 ; z2) + 3ωA(1, 0)Γ ( 1
0 ; z2)

2 − Γ ( 1
0 ; z2)

3
}

= −6ωA(1, 1, 1, 0) + 6ωA(1, 1, 0)ωA(1, 0)− 2ωA(1, 0)3

=
ζ3

2
+ 8 ζ2 ωA(0, 1, 0, 0)− 1

3
ωA(0, 3, 0, 0) (3.16)
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A
[ ]

=

∫
dµopen

3 P12P13P23

= ωA(1, 0)3 − 2

∫ 1

0
dz3

∫ z3

0
dz2 Γ ( 1

0 ; z2) Γ ( 1
0 ; z3)

{
Γ ( 1

0 ; z3) + Γ
(

1
z3 ; z2

)}
= ωA(1, 0)3 + 2

∫ 1

0
dz3 Γ ( 1

0 ; z3) Γ
(

1 0 1
z3 0 0 ; z3

)
= 2 ζ2 ωA(0, 1, 0, 0)− 1

3
ωA(0, 3, 0, 0) . (3.17)

In eq. (3.16), the relevant eMZV relation is

ωA(0, 1, 1, 1) =
ζ3

12
− ζ2

4
ωA(0, 1) +

1

6
ωA(0, 1)3 +

1

36
ωA(0, 3) (3.18)

+
1

2
ωA(0, 1)ωA(0, 0, 2) + 4 ζ2 ωA(0, 0, 0, 1)− 1

6
ωA(0, 0, 0, 3) ,

and the last step of eq. (3.17) involves the identity (2.17) for Γ
(

1 0 1
z3 0 0 ; z3

)
along with the

eMZV relations from appendix I.2 of ref. [25]. Moreover, in eqs. (3.16) and (3.17) we have

replaced the integration domains according to
∫ 1

0 dz2

∫ 1
0 dz3 → 2

∫ 1
0 dz3

∫ z3
0 dz2, which is

valid along with any monomial Pm12P
n
13P

q
23 due to the symmetry Pij = Pji of the propagator,

i.e. for any three-vertex diagram.

3.2.3 Computing A-cycle graph functions at higher weight

A-cycle graph functions with higher numbers of vertices n can be algorithmically computed

by iterating the manipulations in eq. (3.17). Among other things, the recursive techniques

of [23] to eliminate the appearance of the argument z in the second line of the elliptic

iterated integral Γ ( n1 n2 ... nr
z 0 ... 0 ; z) — see e.g. eq. (2.17) — play a key role. As will be

explained in the following, A-cycle graph functions with an arbitrary number of vertices or

edges can always be expressed in terms of eMZVs.

In order to connect with the definition (2.14) of elliptic iterated integrals, the integra-

tion region [0, 1]n−1 of the measure eq. (3.7) has to be decomposed into simplicial cells de-

fined by 0 ≤ zρ(2) ≤ zρ(3) ≤ . . . ≤ zρ(n) ≤ 1 with ρ ∈ Sn−1. Using the symmetry Pij = Pji of

the propagator, this ordering is equivalent to its reversal 0 ≤ zρ(n) ≤ . . . ≤ zρ(3) ≤ zρ(2) ≤ 1,

that is, only 1
2(n−1)! inequivalent cells need to be considered. Different cells benefit from

different representations of the propagators, e.g. in situations with z2 < z3, it is preferable

to use the expression

P23 = ωA(1, 0)−Γ
(

1
z3 ; z2

)
−Γ ( 1

0 ; z3) rather than P23 = ωA(1, 0)−Γ
(

1
z2 ; z3

)
−Γ ( 1

0 ; z2)

(3.19)

as done in eq. (3.17).

Compact expressions for A-cycle graph functions are tied to expressing the eMZVs in

terms of a basis over Q[(2πi)±1]-combinations of MZVs. For certain ranges of their length

and weight, an exhaustive list of such relations among eMZVs is available for download [73],

but already for A-cycle graph functions at weight four, some of the intermediate steps

exceed the scope of this website. In deriving the subsequent results on A-cycle graph

functions of weight w ≤ 6, we have expressed the eMZVs in terms of iterated Eisenstein
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integrals eq. (2.19) to automatically attain the desired basis decomposition. Using this

method, the divergent eMZV ωA(1, 0) could be shown to drop out in all cases considered,

which is a strong consistency check for our calculational setup.

3.2.4 A-cycle graph functions at weight four and beyond

The strategy outlined in the previous section gives rise to the following expressions for the

three A-cycle graph functions at weight four:

A
[ ]

= 15ωA(0,0,2)2−30ωA(0,0,0,0,4)+3ωA(0,0,4)−24ωA(0,0,0,2,2)

−48ζ2ωA(0,0,0,0,2)+13ζ2ωA(0,0,2)+
343ζ4

24
(3.20)

A
[ ]

=
1

2
ωA(0,0,2)2− 1

2
ωA(0,0,0,0,4)−ωA(0,0,0,2,2)

+
7ζ2

3
ωA(0,0,2)−14ζ2ωA(0,0,0,0,2)+

301ζ4

180
(3.21)

A
[ ]

=ωA(0,0,0,0,4)− 1

6
ωA(0,0,4)+

4ζ2

3
ωA(0,0,2)−8ζ2ωA(0,0,0,0,2)+

311ζ4

360
.

(3.22)

At weight five there are six A-cycle graph functions, for example

A
[ ]

=
1

90
ωA(0,5)+

2

3
ωA(0,0,0,5)− 1

3
ωA(0,0,2,3)+2ωA(0,3)ωA(0,0,0,0,2)

−6ωA(0,0,0,0,0,5)+2ωA(0,0,0,0,1,4)− ζ2

3
ωA(0,3)+

8ζ2

9
ωA(0,0,3,0)

+24ζ2ωA(0,0,0,0,0,3)−16ζ2ωA(0,0,0,0,1,2)+
2

3
ζ2 ζ3 +7ζ4ωA(0,0,1,0)

−52ζ4ωA(0,0,0,1,0,0) (3.23)

A
[ ]

=− 7

360
ωA(0,5)+

1

6
ωA(0,0,0,5)−ωA(0,0,0,0,0,5)− ζ2

12
ωA(0,3)+

5ζ2

9
ωA(0,0,3,0)

+10ζ2ωA(0,0,0,0,0,3)− ζ4

2
ωA(0,0,1,0)−9ζ4ωA(0,0,0,1,0,0) , (3.24)

and expressions of comparable complexity for A
[ ]

,A
[ ]

,A
[ ]

and A
[ ]

are dis-

played in appendix E. Analogous results at weight six are available from the authors.

3.3 Evaluating B-cycle graph functions

In this section, we compute modular transformations of A-cycle eMZVs. For this purpose

it will be convenient to represent A-cycle graph functions in terms of iterated Eisenstein
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integrals eq. (2.19)

A
[ ]

= −6 E0(4, 0) +
1

2
ζ2

A
[ ]

=
3

2
ζ3−6 E0(4, 0, 0)− 60 E0(6, 0, 0)

A
[ ]

=
1

4
ζ3−

3

2
E0(4, 0, 0)− 60 E0(6, 0, 0) (3.25)

A
[ ]

= −36 E0(4, 4, 0, 0)− 756 E0(8, 0, 0, 0)− 70 E0(6, 0, 0, 0)− 1

10
E0(4, 0, 0, 0) +

3

8
ζ4

A
[ ]

= −840 E0(8, 0, 0, 0)− 40 E0(6, 0, 0, 0) +
1

8
ζ4 ,

and we will now present two methods to compute their S-transformation. Both of these

methods leave certain additive constants built from MZVs undetermined. These constants

can be either determined numerically or by a method of Enriquez [22], which allows to

infer constant terms of B-cycle eMZVs from the Drinfeld associator, see appendix B for

more details.

In subsections 3.3.1 to 3.3.3, the method of obtaining B-cycle eMZVs from A-cycle

eMZVs as developed by Brown is explained. An alternative method using differential

equations is provided in subsection 3.3.4.

3.3.1 Conversion to Brown’s iterated Eisenstein integrals

In this subsection we want to briefly recall the theory of iterated integrals of Eisenstein

series, developed by Brown in ref. [59], and explain how one can use it to get the q-expansion

of B-cycle eMZVs. The key idea is to express the iterated Eisenstein integrals appearing

in A-cycle graph functions in terms of the iterated integrals

G
[
j1 j2 ... jr
k1 k2 ... kr

; τ
]

:=

i∞∫
τ

dτr τ
jr
r Gkr(τr)

i∞∫
τr

dτr−1 τ
jr−1

r−1 Gkr−1(τr−1) . . .

i∞∫
τ2

dτ1 τ
j1
1 Gk1(τ1) ,

(3.26)

which already appeared in eq. (2.22), and are regularized as explained in subsection 2.2.2.

The modular properties of the functions G are known from ref. [59] (for a certain range of

the powers ji’s) and will be discussed in the next subsection.

The translation between the expressions eq. (2.18) for iterated Eisenstein integrals E
and eq. (3.26) can be conveniently extracted from the respective generating series

Ek(Y0, Y1, . . . , Yr; τ) :=
∑

p0,p1,...,pr≥0

1

(2πi)2p0

[ r∏
i=1

(2πi)ki−2pi−1

]
× E(0p0 , k1, 0

p1 , . . . , kr, 0
pr ; τ)Y p0

0 Y p1
1 · · ·Y

pr
r (3.27)

Gk(T1, T2, . . . , Tr; τ) :=
∑

p1,...,pr≥0

[ r∏
i=1

1

pi!

(
Ti

2πi

)pi]
G
[ p1 p2 ... pr
k1 k2 ... kr ; τ

]
with formal variables Yi and Ti. Here and in later places, we are using multi-index notation

k := (k1, k2, . . . , kr), i.e. eqs. (3.27) define two generating series for any fixed r-tuple k. As
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will be shown in appendix D.3, the series in eqs. (3.27) are related via

Ek(Y0,Y1, . . . ,Yr;τ) = exp

(
τYr
2πi

)
Gk(Y0−Y1,Y1−Y2, . . . ,Yr−1−Yr;τ) (3.28)

Gk(T1,T2, . . . ,Tr;τ) = exp

(
− τU

2πi

)
Ek(T1+T2+ · · ·+Tr+U,T2+ · · ·+Tr+U,. . . ,Tr+U,U ;τ) ,

where the dependence of the right-hand side on the formal variable U drops thanks to

shuffle relations. By isolating the coefficients of suitable monomials in the formal variables,

eq. (3.28) translates into the following relations at depth one and two,

E(0p0 ,k1,0
p1 ;τ) = (2πi)p0+p1−k1+1

∑
α1+β1=p1

(−1)α1τβ1

p0!α1!β1!
G
[
p0+α1

k1
;τ
]
, (3.29)

E(0p0 ,k1,0
p1 ,k2,0

p2 ;τ) = (2πi)p0+p1+p2−k1−k2+2
∑

α1+β1=p1
α2+β2=p2

(−1)α1+α2τβ2

p0!α1!β1!α2!β2!
G
[
p0+α1 β1+α2

k1 k2
;τ
]
,

and conversely

G
[ p1
k1 ; τ

]
= (2πi)k1−p1−1p1! E(0p1 , k1; τ) (3.30)

G
[ p1 p2
k1 k2 ; τ

]
= (2πi)k1+k2−p1−p2−2

∑
a+b=p2

(p1+a)!p2!

a!
E(0p1+a, k1, 0

b, k2; τ) .

3.3.2 Modular transformations of Brown’s iterated Eisenstein integrals

The modular transformation of Brown’s iterated Eisenstein integrals eq. (3.26) can be

compactly encoded in another generating function

IE(τ,∞) := 1 +

i∞∫
τ

ΘE(X1, Y1, τ1) +

i∞∫
τ

ΘE(X2, Y2, τ2)

i∞∫
τ1

ΘE(X1, Y1, τ1) + . . . , (3.31)

where Eisenstein series are combined with non-commutative formal variables17 gk

ΘE(X,Y, τ) = dτ
∑
k≥4

Gk(τ) (X − τY )k−2 gk . (3.32)

As a special case of a lemma proved by Brown in ref. [59], there exists a series CES in

infinitely many non-commutative variables gk and infinitely many pairs of commutative

variables (Xi, Yi) such that18

IE(τ,∞) = CES IE
(
− 1

τ ,∞
)
|S , IE

(
− 1

τ ,∞
)

=
(
CES
)−1|S IE(τ,∞)|S , (3.33)

17Brown developed the theory for the full space of modular forms. Here, we specialize his construction to

iterated integrals of Eisenstein series only, so we keep his original notation, adding the superscript E which

stands for Eisenstein. Moreover, we chose a different normalization convention for Eisenstein series.
18In [59], the position of the factors on the right-hand side is reversed because of our opposite convention

for iterated integrals.
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where |S acts on a function F (Xi, Yi) of the commutative variables Xi, Yi according to

F (Xi, Yi)|S = F (−Yi, Xi) . (3.34)

The series CES does not depend on τ , and its coefficients are called multiple modular values

(of Eisenstein series). In all cases relevant to the computation of B-cycle graph functions

at weight w ≤ 7, these coefficients are Q[2πi]-linear combinations of MZVs of known

transcendentality whose composition can be obtained either numerically, using the fact

that (by eq. (3.33))

CES = IE(i,∞)
(
IE(i,∞)|S

)−1
, (3.35)

or by matching with the method of Enriquez reviewed in appendix B.

The desired modular transformations of iterated Eisenstein integrals can be ex-

tracted from the series in eq. (3.33): to isolate the coefficients of any non-commutative

word gk1gk2 · · · gkr in the above generating series IE(τ,∞) and CES , we will write

IE(τ,∞)(k1, k2, . . . , kr) and CES (k1, k2, . . . , kr), respectively. In terms of Brown’s iterated

Eisenstein integrals eq. (3.26), we find

IE(τ,∞)(k1,k2, . . . ,kr) =

k1−2∑
j1=0

k2−2∑
j2=0

· · ·
kr−2∑
jr=0

[ r∏
i=1

(−1)ji
(
ki−2

ji

)]
(3.36)

×G
[
j1 j2 ... jr
k1 k2 ... kr

;τ
]
Xk1−2−j1

1 Xk2−2−j2
2 · · ·Xkr−2−jr

r Y j1
1 Y j2

2 · · ·Y
jr
r .

In the case of a single integration, one gets abelian cocycles CES (k), also called period

polynomials, very well known after the work of Eichler, Shimura and Manin in the case

of cusp forms, and worked out for Eisenstein series in refs. [74, 75]. In particular, it was

proven that

CES (2k) =
2πi

2k−1

(
ζ2k−1(Y 2k−2 −X2k−2)− (2πi)2k−1

k−1∑
i=1

B2iB2k−2i

(2i)!(2k−2i)!
X2i−1Y 2k−2i−1

)
.

(3.37)

3.3.3 B-cycle eMZVs from Brown’s iterated Eisenstein integrals

The computation of B-cycle eMZVs from eq. (3.33) follows a simple idea which has al-

ready been used in ref. [58] at depth one: once the underlying E(k;− 1
τ ) are related to the

coefficients eq. (3.26) of the series IE(τ,∞), one can use Brown’s result. In particular, by

inserting eq. (3.36) into the special cases of

IE
(
− 1

τ ,∞
)

(k1) = IE(τ,∞)(k1)|S − CES (k1)|S (3.38)

IE
(
− 1

τ ,∞
)

(k1, k2) = IE(τ,∞)(k1, k2)|S − CES (k1)|SIE(τ,∞)(k2)|S

+ CES (k1)|SCES (k2)|S − CES (k1, k2)|S (3.39)
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of eq. (3.33), we arrive at

G
[
j1
k1

;− 1
τ

]
= (−1)j1G

[
k1−2−j1

k1
;τ
]
−
(
k1−2

j1

)−1

ck1−2−j1(k1), (3.40)

G
[
j1 j2
k1 k2

;− 1
τ

]
= (−1)j1+j2G

[
k1−2−j1 k2−2−j2

k1 k2
;τ
]

−(−1)j2
(
k1−2

j1

)−1

ck1−2−j1(k1)G
[
k2−2−j2

k2
;τ
]

(3.41)

+

(
k1−2

j1

)−1(k2−2

j2

)−1(
ck1−2−j1(k1)ck2−2−j2(k2)−ck1−2−j1,k2−2−j2(k1,k2)

)
,

where the quantities c...(k1, . . .) are defined by the expansion

CES (k1, . . . , kr) =

k1−2∑
j1=0

· · ·
kr−2∑
jr=0

cj1,...,jr(k1, . . . , kr)X
k1−2−j1
1 · · ·Xkr−2−jr

r Y j1
1 · · ·Y

jr
r . (3.42)

One must be warned that not all E(k;− 1
τ ) can be computed in this way: if k contains

too many zeros, eq. (3.28) gives rise to G
[
j1 j2 ... jr
k1 k2 ... kr

; τ
]

with ji /∈ {0, 1, . . . , ki−2} which

are excluded from the building block eq. (3.32) of Brown’s series eq. (3.31). However,

this method always applies to the special linear combinations of E(k;− 1
τ ) given by eMZVs

and therefore selected by a certain derivation algebra [24, 76, 77]: this is a consequence

of Proposition 6.3 of ref. [29], and in fact, the linear combinations of E(k;− 1
τ ) descending

from eMZVs are contained in a proper subset of the iterated integrals eq. (2.22). Putting

all of this together, one obtains a closed formula at depth one for p0 + p1 ≤ k1 − 2

E(0p0 , k1, 0
p1 ;− 1

τ ) = (−1)p1(2πi)p0+p1+1−k1
∑

α+β=p1

(k1 − 2− p0 − α)!

α!β!τβ
(3.43)

×
(

(−2πi)p0+α E(0k1−2−p0−α, k1; τ)− (p0 + α)!

(k1 − 2)!
ck1−2−p0−α(k1)

)
,

and higher-depth expressions such as19

(2πi)6 E(6, 4;− 1
τ ) =

ζ3,5

75
+
ζ3ζ5

15
− 503ζ8

10800
− 2ζ5

5
E(0, 0, 4; τ) (3.44)

+ 48
(
E(0, 0, 0, 0, 6, 0, 0, 4; τ) + 5 E(0, 0, 0, 0, 0, 6, 0, 4; τ) + 15 E(0, 0, 0, 0, 0, 0, 6, 4; τ)

)
,

19We do not have a closed formula like eq. (3.37) for multiple modular values at depth ≥ 2, so for the

purposes of this paper, we contented ourselves to guessing their representations as MZVs based on five

hundred digits numerical approximations. In all cases up to weight six, these representations have been

confirmed through the analytic method of appendix B.
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as well as (setting T = πiτ)

E(4, 4, 0, 0;− 1
τ ) = E(0, 0, 4, 4; τ)− ζ3 E(4; τ)

6
+

209π4

11664000

− 1

T

(
E(0, 0, 4, 0, 4; τ) + 3 E(0, 0, 0, 4, 4; τ)− ζ3 E(0, 4; τ)

6
+
ζ2ζ3

360
− 5ζ5

432

)
(3.45)

+
1

2T 2

(1

2
E(0, 0, 4; τ)2 − ζ3 E(0, 0, 4; τ)

6
+
ζ2

3

72

)
,

E(4, 0, 4, 0, 0;− 1
τ ) + 3 E(4, 4, 0, 0, 0;− 1

τ ) = − π4

108
E(4; τ)− 2π2 E(0, 4, 4; τ)− ζ2ζ3

360
+

5ζ5

432

− π2

T

(ζ3

3
E(4; τ)− ζ2

18
E(0, 4; τ)− 2 E(0, 4, 0, 4; τ)− 6 E(0, 0, 4, 4; τ)− 167ζ4

32400

)
− π2

T 2

(
− ζ3

3
E(0, 4; τ) +

ζ2

36
E(0, 0, 4; τ)− ζ2ζ3

540
− 5ζ5

432
+ E(0, 4, 0, 0, 4; τ) (3.46)

+ 4 E(0, 0, 4, 0, 4; τ) + 9 E(0, 0, 0, 4, 4; τ)
)

+
π2

T 3

(1

2
E(0, 0, 4; τ)2 − ζ3

6
E(0, 0, 4; τ) +

ζ2
3

72

)
and the modular transformations given in appendix D.4. In all examples of A-cycle graph

functions tested so far we indeed landed on iterated integrals of the kind eq. (3.26) with

ji ≤ ki − 2, whose S-transform can therefore be computed as explained above. Note that

the relative factor of 3 on the left-hand side of eq. (3.46) is crucial to obey this criterion.

In order to determine the q-expansion of B-cycle graph functions, the iterated Eisen-

stein integrals on the right-hand side of eq. (3.44) and the above depth-two examples

need to be cast into the form E0(k, . . .) with k 6= 0 such that eq. (2.21) becomes appli-

cable. This can always be achieved by first applying shuffle relations such as E(0, 4; τ) =

E(0; τ) E(4; τ)−E(4, 0; τ) and E(0, 0, 4; τ) = E(4, 0, 0; τ) − E(0) E(4, 0; τ) + E(0, 0; τ) E(4; τ)

to attain the form E(k, . . .) with k 6= 0. Then, the conversion between E(. . .) and E0(. . .)

follows from the definitions eqs. (2.18) and (2.19) of the respective iterated Eisenstein

integrals, along with

E(0, 0, . . . , 0︸ ︷︷ ︸
n

; τ) = E0(0, 0, . . . , 0︸ ︷︷ ︸
n

; τ) =
1

n!
(2πiτ)n , (3.47)

for instance E(4, 0; τ) = E0(4, 0; τ) + π2τ2

360 and E(4, 0, 0; τ) = E0(4, 0, 0; τ) + iπ3τ3

540 . At depth

larger than one, this might introduce further instances of E0(0, . . .) with zero in the first

entry which call for additional shuffle manipulations. This can be illustrated through the

following example at depth two

E(4, 4, 0, 0) = E0(4, 4, 0, 0)− 2ζ4

(2πi)4

[
E0(4, 0, 0, 0) + E0(0, 4, 0, 0)

]
+
( 2ζ4

(2πi)4

)2
E0(0, 0, 0, 0)

= E0(4, 4, 0, 0) +
1

360
E0(4, 0, 0, 0)− iπτ

360
E0(4, 0, 0) +

π4τ4

777600
, (3.48)

where we have inserted E0(0, 4, 0, 0) = E0(0) E0(4, 0, 0) − 3 E0(4, 0, 0, 0) in passing to the

second line. A formula for the most general case can be found in appendix D.2.
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3.3.4 B-cycle eMZVs from differential equations

As an alternative and recursive method to determine modular transformations of iterated

Eisenstein integrals eqs. (2.18) and (2.19), one can take advantage of the differential equa-

tion

τ22πi∂τ E(m, 2k ;− 1
τ ) = −(2πi)2−2kτ2k G2k(τ) E(m ;− 1

τ ) (3.49)

τ22πi∂τ E0(m, 2k ;− 1
τ ) = −(2πi)2−2k

[
τ2k G0

2k(τ) + 2 ζ2k(τ
2k − 1)

]
E0(m ;− 1

τ ) (3.50)

for k 6= 0 as well as

τ22πi∂τ E(m, 0;− 1
τ ) = (2πi)2 E(m ;− 1

τ ) , τ22πi∂τ E0(m, 0;− 1
τ ) = (2πi)2 E0(m ;− 1

τ ) ,

(3.51)

resulting from their recursive definition. With this method, the expression for

E(n, 0, 0, . . . , 0;− 1
τ ) in eq. (3.44) with j−1 successive zeros follows from integrating

eqs. (3.49) and (3.51) j times, and the multiple modular values eq. (3.37) arise as the

integration constants of the respective j steps. So the modular transformation is per-

formed separately on each integration kernel in the iterated Eisenstein integrals. At higher

depth, these integration constants can be obtained numerically or by matching with En-

riquez’s method reviewed in appendix B. In all cases we have checked the approach of this

subsection matches the results obtained from Brown’s theory.

3.3.5 Examples of B-cycle graph functions

In applying the modular transformation eq. (3.44) at depth one to the A-cycle graph

functions in eq. (3.25), we have to take the offsets between the E(. . .) and E0(. . .) into

account. From the discussion around eq. (3.47), we have

E0(4, 0;− 1
τ ) = E(4, 0;− 1

τ )− π2

360τ2
= E(4, 0; τ) +

i

πτ
E(4, 0, 0; τ)− iζ3

6πτ
+

π2

216
− π2

360τ2

= E0(4, 0; τ)− 1

T
E0(4, 0, 0; τ)− T 2

1080
+
ζ2

36
+
ζ3

6T
+

ζ4

4T 2
(3.52)

with T = πiτ , and by similar manipulations,

E0(4, 0, 0;− 1
τ ) = −π

2

T 2
E0(4, 0, 0; τ) +

Tζ2

90
+
ζ3

6
+

5ζ4

6T
+
ζ2ζ3

T 2
+

7ζ6

4T 3
. (3.53)

Following the same strategy at higher weight, one obtains the following expressions for

B-cycle graph functions:

B
[ ]

=
T 2

180
+
ζ2

3
− ζ3

T
− 3ζ4

2T 2
− 6 E0(4, 0) +

6 E0(4, 0, 0)

T

B
[ ]

= − T 3

3780
− Tζ2

60
− ζ4

T
− 3ζ2ζ3

2T 2
+

3ζ5

2T 2
− ζ6

8T 3

− 60 E0(6, 0, 0) +
180 E0(6, 0, 0, 0)

T
− 180 E0(6, 0, 0, 0, 0)

T 2
+

9ζ2 E0(4, 0, 0)

T 2

B
[ ]

=
T 4

75600
+
T 2ζ2

945
+

13ζ4

180
+

4ζ6

3T 2
+

4ζ2ζ5

T 3
− 5ζ7

2T 3
+

95ζ8

24T 4
(3.54)

− 840 E0(8, 0, 0, 0) +
5040 E0(8, 0, 0, 0, 0)

T
− 12600 E0(8, 0, 0, 0, 0, 0)

T 2

+
12600 E0(8, 0, 0, 0, 0, 0, 0)

T 3
+

240ζ2 E0(6, 0, 0, 0)

T 2
− 480ζ2 E0(6, 0, 0, 0, 0)

T 3
.
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We have rewritten the integrals E following from the above modular transformations

in terms of E0 to make the q-expansion of the B-cycle graph functions accessible from

eq. (2.21). Moreover, this highlights the property of B-cycle eMZVs that coefficients of

qn are Laurent polynomials in τ . The change of variables from πiτ to T absorbs all extra

powers of πi and yields Q-linear combinations of MZVs as Laurent coefficients, as remarked

in eq. (2.13). Hence, these Laurent polynomials can be thought of as the open-string an-

tecedents of the zero modes d[G] of modular graph functions discussed in section 2.3.1.

Accordingly, we will denote the coefficient of q0 in the B-cycle graph function B[G] by

b[G], e.g. one finds

b
[ ]

=
T 2

180
+
ζ2

3
− ζ3

T
− 3ζ4

2T 2
, b

[ ]
= − T 3

3780
−Tζ2

60
− ζ4

T
− 3ζ2ζ3

2T 2
+

3ζ5

2T 2
− ζ6

8T 3
, (3.55)

and a method to determine such b[G] from the Drinfeld associator is presented in ap-

pendix B. This method goes back to Enriquez [22], where a generating series for the

constant terms of A-cycle and B-cycle eMZVs is given, and a procedure to extract the

constant terms of individual A-cycle eMZVs is explained in section 2.3 of ref. [24].

At depth two, the modular transformation eq. (3.45) of E(4, 4, 0, 0) leads to

B
[ ]

− 9
10 B

[ ]
= − T 4

324000
+

17T 2ζ2

18900
− Tζ3

180
+

253ζ4

1800
− 5ζ5

12T
+

49ζ6

80T 2

− ζ2
3

4T 2
− 3ζ3ζ4

2T 3
+

17ζ5ζ2

5T 3
+

277ζ8

48T 4
+
( T

30
+

3ζ3

T 2
+

9ζ4

T 3

)
E0(4, 0, 0)− 9 E0(4, 0, 0)2

T 2

+
36

T

[
E0(4, 0, 4, 0, 0) + 3 E0(4, 4, 0, 0, 0) + 1

360 E0(4, 0, 0, 0, 0)
]

(3.56)

− 36
[
E0(4, 4, 0, 0) + 1

360 E0(4, 0, 0, 0)
]

+
204ζ2 E0(6, 0, 0, 0)

T 2
− 408ζ2 E0(6, 0, 0, 0, 0)

T 3
,

where the specific linear combination of B-cycle graph functions will be motivated in sec-

tion 4.2. Note that the combination E0(4, 4, 0, 0) + 1
360 E0(4, 0, 0, 0) in the last line can be

recombined to E(4, 4, 0, 0) according to eq. (3.48), and a similar statement applies to the

length-five combination in the third line of eq. (3.56).

By the modular transformation eq. (D.19), the A-cycle graph functions eqs. (3.23)

and (3.24) at weight five are mapped to the B-cycle graph function

B
[ ]

− 43
35 B

[ ]
=

T 5

2381400
+
T 2ζ3
3780
− ζ5

360
+

7ζ7
8T 2 +

ζ3ζ5
T 3 −

(
T 2

630
+

6ζ5
T 3

)
E0(4,0,0)

+
(

2T

3
+

60ζ3
T 2

)
E0(6,0,0,0)−

(
4+

120ζ3
T 3

)
E0(6,0,0,0,0)

− 360E0(4,0,0)E0(6,0,0,0)

T 2 +
720E0(4,0,0)E0(6,0,0,0,0)

T 3

−720E0(4,6,0,0,0)+
1

42
E0(4,0,0,0,0)−240E0(6,0,4,0,0)−720E0(6,4,0,0,0)

+
720E0(4,0,6,0,0,0)

T
+

4320E0(4,6,0,0,0,0)

T
− E0(4,0,0,0,0,0)

14T
(3.57)

+
720E0(6,0,0,4,0,0)

T
+

2160E0(6,0,4,0,0,0)

T
+

4320E0(6,4,0,0,0,0)

T

+
10E0(6,0,0,0,0,0)

T
− 1440E0(4,0,6,0,0,0,0)

T 2 − 7200E0(4,6,0,0,0,0,0)

T 2

+
E0(4,0,0,0,0,0,0)

14T 2 − 10E0(6,0,0,0,0,0,0)

T 2 − 720E0(6,0,0,0,4,0,0)

T 2

− 2160E0(6,0,0,4,0,0,0)

T 2 − 4320E0(6,0,4,0,0,0,0)

T 2 − 7200E0(6,4,0,0,0,0,0)

T 2 mod ζ2 .
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For reasons to be explained in subsection 4.3 below, we have suppressed terms of the form

π2k E0(. . .)Tm with k ≥ 1 and m ∈ Z and refer to their omission by mod ζ2. The modular

transformations in appendix D.4 lead to similar expressions for B-cycle graph functions at

weight six which are available from the authors upon request. We have also determined

numerically a Laurent polynomial at weight seven20

b
[ ]

=− 31T 7

700539840
− 5251T 5ζ2

233513280
+
T 4ζ3

3888
− 7405T 3ζ4

598752
+

119T 2ζ5

2592
+

31T 2ζ2ζ3

864

− 11Tζ2
3

216
− 15527Tζ6

10368
+

21ζ7

32
+

67ζ2ζ5

27
+

167ζ3ζ4

48
− 23ζ3ζ5

3T
− 80017ζ8

1296T
+

3ζ2ζ
2
3

T

− 25ζ3
3

4T 2
+

7115ζ9

144T 2
+

21ζ2ζ7

T 2
+

35ζ4ζ5

6T 2
− 6613ζ3ζ6

288T 2
+

75ζ2
5

4T 3
− 1245ζ3ζ7

8T 3
− 48ζ3,5ζ2

T 3

+
443ζ2ζ3ζ5

T 3
− 275ζ2

3ζ4

8T 3
+

941869ζ10

5760T 3
− 9573ζ11

16T 4
− 18ζ3,5,3

T 4
− 405ζ2

3ζ5

4T 4
+

195ζ2ζ
3
3

2T 4

+
27745ζ5ζ6

48T 4
− 3795ζ4ζ7

16T 4
+

17731ζ3ζ8

16T 4
+

15875ζ2ζ9

12T 4
− 2475ζ5ζ7

4T 5
− 1125ζ3ζ9

4T 5

+
90ζ3,5ζ4

T 5
+

450ζ3,7ζ2

7T 5
− 165ζ3ζ4ζ5

2T 5
+

3375ζ2ζ
2
5

7T 5
+

3335ζ2
3ζ6

4T 5
+

3960ζ2ζ3ζ7

7T 5

+
93091945ζ12

11056T 5
− 1575ζ13

T 6
+

13275ζ2ζ11

4T 6
+

7425ζ4ζ9

8T 6
+

129465ζ6ζ7

16T 6
+

233525ζ5ζ8

48T 6

+
160053ζ3ζ10

64T 6
+

15301285ζ14

768T 7
(3.58)

comprising the depth-three MZV ζ3,5,3 along with T−4 which will be argued to harmonize

with the Laurent polynomial eq. (2.44) of the corresponding modular graph function.

4 Open versus closed strings

In this section, we are going to establish and discuss the relation and connection between

open-string graph functions and modular graph functions. The reason and origin for our in-

vestigations is a stunning similarity of the relations satisfied by open-string graph functions

and their corresponding modular graph functions: in subsection 4.1 we are going to spell

out commonalities and differences in order to establish a clear starting point. Given this

similarity, it is an obvious question, whether modular graph functions can be eventually

calculated from their open-string analogues. Anticipating the main result of this article,

the answer is indeed positive: we can obtain modular graph functions from A-cycle graph

functions performing the operations noted at the arrows in figure 3. The two different

paths which can be taken in order to obtain modular graph functions from A-cycle graph

functions are as follows:

• the first path starts from A-cycle graph functions and employs the similarity between

the τ -derivative on the A-cycle graph functions and the Cauchy-Riemann derivative

acting on modular graph functions. Using the appropriate derivatives multiple times

on both sides of the correspondence allows to successively infer the elements of the

20Here we have been employing results from the multiple zeta value data mine [78].
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A-cycle graph
function

B-cycle graph
function

modular graph
function

modular
transformation

τ → − 1
τ

esv
projection

compare
τ -derivative

and
Cauchy–Riemann

derivative

.

Figure 3. Two paths for the calculation of modular graph functions.

modular graph functions from their A-cycle graph analogues. This method is de-

scribed in subsection 4.2.

• for the second path one converts A-cycle graph functions into B-cycle ones. Following

this step, the projection esv is applied, which we conjecture to be an elliptic analogue

of the single-valued projection sv mentioned in eq. (1.2). While the conversion from

A- to B-cycle graph functions using a modular transformation has been described in

subsection 3.3, the map esv will be described and discussed in subsection 4.3.

Both methods yield the same results, which are simultaneously in agreement with all

expressions for modular graph functions calculated before [1–3].

4.1 Comparing relations among A-cycle graph functions with relations among

modular graph functions

Given the common graphical representation of A-cycle graph functions and modular graph

functions it is tempting to investigate, whether the known relations for modular graph

functions reviewed in subsection 2.3.2 have an echo for A-cycle graph functions.

The simplest relation among modular graph functions, D
[ ]

−D
[ ]

= ζ3 at weight

three, translates into

A
[ ]

−A
[ ]

=
1

2
ζ3 +6 ζ2 ωA(0, 1, 0, 0) , (4.1)

and the weight-four relation eq. (2.47) leads to

A
[ ]

−24A
[ ]

+18A
[ ]

−3A
[ ]2

= 144ζ2ωA(0,0,0,0,2)−24ζ2ωA(0,0,2)− 31

2
ζ4 ,

(4.2)

where the right-hand sides have been obtained by simply plugging in our results from

subsection 3.2.

The right-hand sides of the corresponding equations for modular graph functions,

eqs. (2.46) and (2.47) read ζ3 and 0, respectively. This is rather suggestive: a relation
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between A-cycle graph functions might imply a valid relation between modular graph

functions by formally replacing

ωA(m) ζn → ωA(m) ζsv
n , (4.3)

where the single-valued projection of MZVs has been discussed in eqs. (1.2) and (1.3),

and we remind the reader of the multi-index notation n = (n1, n2, . . . , nr). The ad-hoc

prescription eq. (4.3) has the desired effect of replacing 1
2ζ3 with ζ3 on the right-hand side

of eq. (4.1).21 Similarly, ζ4 is mapped to zero on the right-hand side of eq. (4.2), and all

instances of ζ2 ωA(m) are suppressed. For brevity of notation below, let X be the rational

vector space generated by products of classical and elliptic MZVs vanishing after applying

eq. (4.3). That is

X := 〈ζ2 ωA(m), ζ4 ωA(m), . . . , (2 ζ3,5 +5 ζ3 ζ5)ωA(m), . . .〉Q . (4.4)

In the equations below we will write “mod X”, which means that we are not writing terms

from the space X. At weight five, the expressions in eqs. (3.23), (3.24) and appendix E for

A-cycle graph functions lead to the relations

40 A
[ ]

= 300 A
[ ]

+ 120 A
[ ]

A
[ ]

− 276 A
[ ]

+
7

2
ζ5 mod X (4.5)

A
[ ]

= 60 A
[ ]

+ 10 A
[ ]

A
[ ]

− 48 A
[ ]

+ 8ζ5 mod X (4.6)

10 A
[ ]

= 20 A
[ ]

− 4 A
[ ]

+
3

2
ζ5 mod X (4.7)

30 A
[ ]

= 12 A
[ ]

+
ζ5

2
mod X , (4.8)

which — upon employing eq. (4.3) — yield relations (2.48) to (2.51) among modular graph

functions. The validity of the connection between A-cycle graph functions and modular

graph functions described above has been also checked for relations between A-cycle graph

functions of weight six, see appendix F — applying eq. (4.3) reproduces the relations

eq. (F.1) among modular graph functions from open-string input.22

Note that the prescription in eq. (4.3) is ill-defined as it does depend on the particular

representations of eMZVs. In particular, there exist many relations among eMZVs and

classical MZVs: for instance, the combination 2ωA(0, 2, 2) + ωA(0, 0, 4) = 3ζ4 should in

principle be annihilated by applying eq. (4.3), but the definition in eq. (4.3) leaves both

21When A-cycle eMZVs are expressed in terms of iterated Eisenstein integrals E , the prescription in

eq. (4.3) might seem to be tension with the intuition from the single-valued projection of MZVs. For

instance, ζ2 ωA(0, 1, 0, 0 |τ) can be represented as 1
8
ζ3 − 3

4
E0(4, 0, 0; q). Demanding consistency after appli-

cation of eq. (4.3) to both expressions would yield a constraint for a replacement of E0(4, 0, 0; q). As will

become clear in subsection 4.3, the formulation of eq. (4.3) in terms of ωA is very natural after converting

the A-cycle eMZVs ωA to B-cycle eMZVs ωB by a modular transformation.
22More precisely, we have been calculating only 12 out of the 13 A-cycle graph functions at weight six,

since A
[ ]

is beyond the reach of our current computer implementation. Instead, we have inferred a

conjectural expression for A
[ ]

mod X from one of the relations in eq. (F.1). Hence, only seven out of

the eight relations in appendix F could be used as a check.

– 30 –



J
H
E
P
0
1
(
2
0
1
9
)
1
5
5

terms ωA(0, 2, 2) and ωA(0, 0, 4) inert. However, this does not affect the statement of the

following conjecture: given a polynomial P in A-cycle graph functions and MZVs such that

P(A[G], ζn) = 0 mod X , (4.9)

with some graphs G, one can replace A[G] → D[G] and ζn → ζsv
n in that polynomial to

obtain a relation between modular graph functions

P(D[G], ζsv
n ) = 0 . (4.10)

While this alone is a beautiful result, we would like to turn it into a formalism to ac-

tually compute modular graph functions. The next two subsections are dedicated to the

description of the two possible methods outlined in figure 3.

We emphasize that eqs. (4.9) and (4.10) only apply to modular graph functions and

A-cycle graph functions that are defined by integrating monomials in Green functions

(involving any number of punctures). In superstring amplitudes involving five or more legs

and all massless heterotic-string amplitudes, however, one may encounter more general

integrals which will require extensions of the correspondence in eqs. (4.9) and (4.10) between

open- and closed-string expressions. The same caveat applies to the rest of this section.

4.2 Modular graph functions from A-cycle graph functions

Given that relations among A-cycle graph functions can be mapped to those of modular

graph functions, a natural follow-up question concerns a mapping between the respective

functions of τ themselves: eMZVs on the open-string side and, as will be shown below, real

parts of iterated Eisenstein integrals on the closed-string side. For this purpose, we compare

first-order differential operators, namely ∂τ := ∂
∂τ acting on A-cycle graph functions and

the Cauchy-Riemann derivative ∇ defined in eq. (2.56) acting on modular graph functions.

4.2.1 τ -derivatives versus Cauchy-Riemann equations

From the representation of A-cycle graph functions in terms of eMZVs, their τ -derivatives

can be conveniently computed using eq. (C.3). For instance, the expressions eqs. (3.15)

and (3.17) straightforwardly imply that

2πi∂τ A
[ ]

= −2ωA(0, 3)

(2πi∂τ )2 A
[ ]

= 6 G0
4 (4.11)

as well as

2πi∂τ A
[ ]

= 3ωA(0, 0, 4)− 6ζ2 ωA(0, 0, 2)− 4ζ4

(2πi∂τ )2 A
[ ]

= −12ωA(0, 5) + 12ζ2 ωA(0, 3) (4.12)

(2πi∂τ )3 A
[ ]

= 60 G0
6−36ζ2 G0

4 ,

see eq. (2.20) for our conventions for G0
k. In the previous subsection, relations between A-

cycle graph functions were found to only resemble those of modular graph functions after
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dropping terms from the space X defined in eq. (4.4). Hence, we shall consider the simpler

differential equations obeyed by a hatted version of A-cycle graph functions, in which the

terms projected to zero by eq. (4.3) are omitted:

Â[G] = A[G] mod X . (4.13)

The simplest examples of Â[G] can be expressed as:

Â
[ ]

= ωA(0, 0, 2) , Â
[ ]

= −ωA(0, 0, 0, 3) +
1

6
ωA(0, 3)

Â
[ ]

= ωA(0, 0, 0, 0, 4)− 1

6
ωA(0, 0, 4) (4.14)

Â
[ ]

= −ωA(0, 0, 0, 0, 0, 5) +
1

6
ωA(0, 0, 0, 5)− 7

360
ωA(0, 5)

Â
[ ]

=
1

2
ωA(0, 0, 2)2 − 1

2
ωA(0, 0, 0, 0, 4)− ωA(0, 0, 0, 2, 2) .

Writing the analogue of eq. (4.12) for Â[G], the Eisenstein series G0
4 in the last line is no

longer existent. Considering other simple graphs, one finds for instance

(2πi∂τ )2 Â
[ ]

= 6 G0
4 , (2πi∂τ )3 Â

[ ]
= 60 G0

6 (4.15)

(2πi∂τ )4 Â
[ ]

= 840 G0
8 , (2πi∂τ )5 Â

[ ]
= 15120 G0

10 ,

which intriguingly resemble the following instances of eq. (2.57):

(π∇)2 D
[ ]

= 6 (Im(τ))4 G4 , (π∇)3 D
[ ]

= 60 (Im(τ))6 G6 (4.16)

(π∇)4 D
[ ]

= 840 (Im(τ))8 G8 , (π∇)5 D
[ ]

= 15120 (Im(τ))10 G10 .

A similar correspondence can be established for graphs with more than one loop: for

instance, the expression for Â
[ ]

in eq. (4.14) yields

(2πi∂τ )3 Â
[ ]

= 12 G0
4 ωA(0, 3)− 108ωA(0, 7)− 72ζ4 ωA(0, 3) (4.17)

= −6 G0
4 2πi∂τ Â

[ ]
+

9

10
(2πi∂τ )3 Â

[ ]
mod X ,

which resembles the differential equation (2.58) among modular graph functions

(π∇)3 D
[ ]

= −6(Im(τ))4 G4 π∇D
[ ]

+
9

10
(π∇)3 D

[ ]
. (4.18)

In passing to the second line of eq. (4.17), we have identified 2πi∂τ Â
[ ]

= −2ωA(0, 3)

as well as (2πi∂τ )3 Â
[ ]

= −120ωA(0, 7) and dropped −72ζ4 ωA(0, 3) as it is contained

in the space X defined in eq. (4.4). In a similar way, discarding23 terms from X in the

third τ -derivative of A
[ ]

gives rise to an open-string counterpart of eq. (2.59).

23Of course, we will as well discard terms like G0
2k ζ2 ωA(n) containing a factor from X.
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We infer the following general conjecture from the above examples: suppose that A-

cycle graph functions associated with some graphs G satisfy the differential equation

Q(2πi∂τ ,G
0
2k,A[G]) = 0 mod X , (4.19)

with some polynomial Q in G0
2k(2πi∂τ )nA[G] where k, n ≥ 0. Then, one can coherently

replace A[G]→ D[G] as well as 2πi∂τ → π∇ and G0
2k → (Im(τ))2k G2k in that polynomial

and obtain a Cauchy-Riemann equation among modular graph functions

Q(π∇, (Im(τ))2k G2k,D[G]) = 0 . (4.20)

This procedure has been used at weight w = 5, 6 to derive conjectural Cauchy-Riemann

differential equations for modular graph functions from A-cycle graph functions and thus

constitutes an alternative way compared to the graphical manipulations of refs. [7, 11].

Our method has been checked to either reproduce the Cauchy-Riemann equations in the

above reference or to yield expressions for modular graph functions that satisfy the Laplace

equations in subsection 2.3.3 as discussed in the following section.

4.2.2 Integrating Cauchy-Riemann equations

We shall now describe techniques to convert Cauchy-Riemann equations derived via

eqs. (4.19) and (4.20) into explicit representations of modular graph functions. The idea is

to solve the differential equations in terms of iterated Eisenstein integrals eq. (2.19) along

with integer powers of Im(τ) and to fix the integration constants via modular invariance

and reality of D[G]. However, these constraints do not fix the last integration constant

which amounts to adding MZVs of the appropriate weight to the modular graph function

under investigations. This shortcoming can be fixed either by numerical evaluation or by

employing the alternative method described in subsection 4.3.

In case of one-loop graphs, eq. (2.57) can be integrated to yield the representation

eq. (2.34) of non-holomorphic Eisenstein series Ek up to integration constants and anti-

holomorphic iterated Eisenstein integrals. The case k = 2 in eq. (2.57) reads

(π∇)2 E2 = 6(Im(τ))4 G4 (4.21)

which — upon integration in τ — yields

π∇E2 =
2y3

45
+ c1ζ3 + 24y2 E0(4) + 12y E0(4, 0) + 3 E0(4, 0, 0) + c2E0(4, 0, 0) (4.22)

with rational constants c1, c2 and y = π Im(τ). Then, a further integration gives rise to

E2 =
y2

45
− c1

ζ3

y
− 6 E0(4, 0) + c3E0(4, 0)− 3

y
E0(4, 0, 0)− c2

y
E0(4, 0, 0) (4.23)

with another rational constant c3. While performing the above integrations, we have used

that Cauchy-Riemann derivatives act via

π∇(yn) = n yn+1 , π∇(E0(k1, k2, . . . , kr)) =
4y2

(2πi)kr
G0
kr E0(k1, k2, . . . , kr−1) , (4.24)
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and the integration constants ci ∈ Q have been introduced following two selection rules:

(i) Let D[Gw] denote a modular graph function of weight w, then the admissible in-

tegration constants in (π∇)nD[Gw] without any accompanying E0(k) are rational

combinations of single-valued MZVs of weight w+n.

(ii) Whenever (π∇)nD[Gw] contains a term ζsv
m E0(k), then rational multiples of its com-

plex conjugate ζsv
m E0(k) have to be included in the integration constant.

Note that, as a consequence of (i), there is no rational multiple of ζ2 in eq. (4.23).

The rational constants ci ∈ Q in eq. (4.23) can be fixed by imposing reality D[Gw] =

D[Gw] and modular invariance: reality requires the coefficients of E0(4, 0) and E0(4, 0) as

well as E0(4, 0, 0) and E0(4, 0, 0) to match, yielding c2 = 3 and c3 = −6. Then, the modular

transformations eqs. (3.52) and (3.53) of E0(4, 0), E0(4, 0, 0) and their complex conjugates

introduce ζ3 in a way such that eq. (4.23) can only be modular invariant for c1 = −1.

Hence, we arrive at

E2 =
y2

45
+
ζ3

y
− 12 Re[E0(4, 0)]− 6

y
Re[E0(4, 0, 0)] , (4.25)

which agrees with eq. (2.34). However, the criterion based on modular invariance still leaves

the freedom to add single-valued MZVs to D[Gw] which do not exist in the case at hand

with w = 2. When applying the above integration procedure to obtain the expressions

E3 =
2y3

945
+

3ζ5

4y2
− 120 Re[E0(6, 0, 0)]− 180

y
Re[E0(6, 0, 0, 0)]− 90

y2
Re[E0(6, 0, 0, 0, 0)]

(4.26)

E4 =
y4

4725
+

5ζ7

8y3
− 1680 Re[E0(8, 0, 0, 0)]− 5040

y
Re[E0(8, 0, 0, 0, 0)]

− 6300

y2
Re[E0(8, 0, 0, 0, 0, 0)]− 3150

y3
Re[E0(8, 0, 0, 0, 0, 0, 0)] (4.27)

at weight w = 3, 4, the absence of ζ3 in E3 must be checked either by numerical evaluation

or by the methods of section 4.3.

Note that the task of integrating Cauchy-Riemann equations is completely analogous

to computing modular transformations of iterated Eisenstein integrals from their differen-

tial equations, see section 3.3.4. In particular, the differential operator ∼ τ2∂τ for recur-

sive computations of B-cycle graph functions in eqs. (3.49) to (3.51) can be mapped to

the Cauchy-Riemann derivative eq. (2.56) by replacing τ2∂τ → (Im τ)2∂τ . This is another

reason to expect strong parallels between B-cycle graph functions and modular graph func-

tions.

4.2.3 Simplifying Cauchy-Riemann equations for multi-loop graphs

When applying the integration procedure of the previous subsection to modular graph

functions corresponding to graphs with more than one loop, it is useful to disentangle

iterated Eisenstein integrals with different types of entries. For instance, the simplest
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irreducible two-loop modular graph function D
[ ]

will comprise two kinds of iterated

Eisenstein integrals involving either two instances of G0
4 or a single integration kernel G0

8.

Any appearance of G0
8 in modular graph functions at weight four can be captured via E4,

so it is convenient to study the linear combination

E2,2 := D
[ ]

− 9

10
E4 (4.28)

for which the Cauchy-Riemann equation (4.18) simplifies to

(π∇)3 E2,2 = −6 Im(τ)4 G4 π∇E2 . (4.29)

Then, starting from the representation (4.25) of E2, integration of eq. (4.29) yields depth-

two iterated Eisenstein integrals with two entries of G0
4. This observation motivates us to

define the depth of a modular graph function to be the minimum depth of the iterated

Eisenstein integrals required to represent it, see section 2.2.2. Hence, the object E2,2 in

eq. (4.28) is our simplest example of a modular graph function of depth two.

Similarly, Cauchy-Riemann equations at higher weight (which can be extracted from

refs. [7, 11] and which we obtained from employing the correspondence in eqs. (4.19)

and (4.20)) simplify when considering the following combinations:

E2,3 = D
[ ]

− 43

35
E5 (4.30)

E3,3 = 3 D
[ ]

+ D
[ ]

− 15

14
E6 (4.31)

E′3,3 = D
[ ]

+
17

60
D
[ ]

− 59

140
E6 (4.32)

E2,4 = 9 D
[ ]

+ 3 D
[ ]

+ D
[ ]

− 13E6 (4.33)

E2,2,2 = −D
[ ]

+
232

45
D
[ ]

+
292

15
D
[ ]

+
2

5
D
[ ]

+ 2E2
3 + E2E4 −

466

45
E6 .

(4.34)

The above combinations can be thought of as higher-depth generalizations of non-holo-

morphic Eisenstein series. The benefit of the subtractions of Ek in eq. (4.30) to eq. (4.34)

becomes apparent24 in

(π∇)3 E2,3 = −2(π∇E2)(π∇)2E3 − 4 Im(τ)4 G4 π∇E3 (4.35)

(π∇)5 E3,3 = 180 Im(τ)6 G6(π∇)2E3 (4.36)

(π∇)4 E′3,3 = −12 Im(τ)6 G6(π∇)E3 (4.37)

(π∇)3 E2,4 = −27 Im(τ)4 G4(π∇)E4 + R2,4 (4.38)

π∇R2,4 = −81 Im(τ)4 G4(π∇)2E4 − 27(π∇)E2(π∇)3E4 (4.39)

from which we can anticipate all of E2,3,E3,3,E
′
3,3 and E2,4 to be of depth two. Finally,

modular graph functions at weight six contain one independent depth-three representative

24Note that these subtractions also simplify the respective Laplace equations, e.g. we have (∆−2) E2,2 =

−E2
2 instead of eq. (2.53).
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satisfying

(π∇)3 E2,2,2 = −12 Im(τ)4 G4 π∇E2,2 +(π∇E2)3 . (4.40)

For all terms ∇nEk on the right-hand side of the above Cauchy-Riemann equations, a

representation in terms of iterated Eisenstein integrals E0 can be found in appendix G.1.

We will now proceed to solving eq. (4.29) and eqs. (4.35) to (4.40) using the method in

subsection 4.2.2.

4.2.4 Explicit solutions to Cauchy-Riemann equations at higher depth

For the simplest modular graph function of depth two, E2,2, the differential equation

eq. (4.29) can be integrated to yield

E2,2 =− y4

20250
+
yζ3

45
+

5ζ5

12y
− ζ2

3

4y2
−
(2y

15
− 3ζ3

y2

)
Re[E0(4,0,0)]

− 9

2y2

(
Re[E0(4,0,0)]2+Im[E0(4,0,0)]2

)
−72Re[E0(4,4,0,0)]− 1

5
Re[E0(4,0,0,0)]

− 36Re[E0(4,0,4,0,0)]

y
− 108Re[E0(4,4,0,0,0)]

y
−Re[E0(4,0,0,0,0)]

10y
(4.41)

− 9Re[E0(4,0,0,4,0,0)]

y2
− 27Re[E0(4,0,4,0,0,0)]

y2
− 54Re[E0(4,4,0,0,0,0)]

y2
,

see eq. (G.1) for a convenient representation of the factor ∇E2 therein. Unlike the ex-

pression for Ek, eq. (4.41) contains products of holomorphic and antiholomorphic iterated

Eisenstein integrals, for example in

Re[E0(4, 0, 0)]2 =
1

4
E0(4, 0, 0)2 +

1

2
E0(4, 0, 0)E0(4, 0, 0) +

1

4
E0(4, 0, 0)

2
(4.42)

and Im[E0(4, 0, 0)]2. The latter can be eliminated from eq. (4.41) by taking the real part

of E0(4, 0, 0)2 and taking the shuffle relation

E0(4, 0, 0)2 = 2 E0(4, 0, 0, 4, 0, 0) + 6 E0(4, 0, 4, 0, 0, 0) + 12 E0(4, 4, 0, 0, 0, 0) , (4.43)

into account. This manipulation turns out to cancel all iterated Eisenstein integrals of

length six from eq. (4.41):

E2,2 = − y4

20250
+
yζ3

45
+

5ζ5

12y
− ζ2

3

4y2
−
(2y

15
− 3ζ3

y2

)
Re[E0(4, 0, 0)]

− 9 Re[E0(4, 0, 0)]2

y2
− 72 Re[E0(4, 4, 0, 0)]− 1

5
Re[E0(4, 0, 0, 0)] (4.44)

− 36 Re[E0(4, 0, 4, 0, 0)]

y
− 108 Re[E0(4, 4, 0, 0, 0)]

y
− Re[E0(4, 0, 0, 0, 0)]

10y
.

The coefficients of ζ5
y and

ζ23
y2

in eqs. (4.41) and (4.44) appear as integration constants

in intermediate steps and can by fixed by imposing modular invariance25 of eq. (4.44).

25The modular transformations in eqs. (3.53), (3.45) and (3.46) are sufficient to check this.
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We have checked the resulting expression for D
[ ]

to satisfy the Laplace eigenvalue

equation (2.53), and its coefficient of q1q0 has been verified to agree with the results of

ref. [3]. By inserting the q-expansion eq. (2.21) of iterated Eisenstein integrals, any term

in the expansion eq. (2.37) of modular graph functions around the cusp is readily available

from eq. (4.44) and similar expressions below.

Similarly, the Cauchy-Riemann equation (4.35) for the depth-two modular graph func-

tion eq. (4.30) at weight five can be integrated to yield

E2,3 =− 4y5

297675
+

2y2ζ3

945
− ζ5

180
− ζ3ζ5

2y3
+

7ζ7

16y2
−
(4y2

315
− 3ζ5

y3

)
Re[E0(4,0,0)]

−
(8y

3
− 60ζ3

y2

)
Re[E0(6,0,0,0)]−

(
8− 60ζ3

y3

)
Re[E0(6,0,0,0,0)]

− 360Re[E0(4,0,0)]Re[E0(6,0,0,0)]

y2
− 360Re[E0(4,0,0)]Re[E0(6,0,0,0,0)]

y3

−1440Re[E0(4,6,0,0,0)]+
Re[E0(4,0,0,0,0)]

21

−480Re[E0(6,0,4,0,0)]−1440Re[E0(6,4,0,0,0)]

− 720Re[E0(4,0,6,0,0,0)]

y
− 4320Re[E0(4,6,0,0,0,0)]

y
+

Re[E0(4,0,0,0,0,0)]

14y
(4.45)

− 720Re[E0(6,0,0,4,0,0)]

y
− 2160Re[E0(6,0,4,0,0,0)]

y
− 4320Re[E0(6,4,0,0,0,0)]

y

− 10Re[E0(6,0,0,0,0,0)]

y
− 720Re[E0(4,0,6,0,0,0,0)]

y2
− 3600Re[E0(4,6,0,0,0,0,0)]

y2

+
Re[E0(4,0,0,0,0,0,0)]

28y2
− 360Re[E0(6,0,0,0,4,0,0)]

y2
− 1080Re[E0(6,0,0,4,0,0,0)]

y2

− 2160Re[E0(6,0,4,0,0,0,0)]

y2
− 3600Re[E0(6,4,0,0,0,0,0)]

y2
− 5Re[E0(6,0,0,0,0,0,0)]

y2
,

see eqs. (G.2) and (G.3) for explicit expressions of ∇E3 and∇2E3. Following the strategy of

simplifying E2,2, we have eliminated the appearance of Im[E0(4, 0, 0)] Im[E0(6, 0, 0, 0)] and

Im[E0(4, 0, 0)] Im[E0(6, 0, 0, 0, 0)] in intermediate steps by taking the real part of appropriate

shuffle relations. These manipulations also remove all iterated Eisenstein integrals of length

8 from our final expression eq. (4.45). Hence, elimination of any Im[E0(. . .)] via shuffle

relations will be our guiding principle for all subsequent cases which turns out to reduce

the maximum length of the iterated Eisenstein integrals appearing in a given Ek.

The coefficient of ζ5 in E2,3 is not fixed by modular invariance and can be inferred

by comparison with the results in the literature, numerical evaluation or by the method

discussed in subsection 4.3. The expression for D
[ ]

resulting from eq. (4.45) has been

checked to satisfy the Laplace equation (2.54), and its coefficient of q1q0 agrees with the

results of [3].

There are three independent modular graph functions at weight six and depth two:

E3,3,E
′
3,3 as well as E2,4 defined in eqs. (4.31) to (4.33) are a convenient choice of basis.
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Integrating the Cauchy-Riemann equation (4.36) for E3,3 gives rise to

E3,3 =
2y6

6251175
+
yζ5

210
+

ζ7

16y
− 7ζ9

64y3
+

9ζ2
5

64y4
−
(4y

7
+

135ζ5

4y4

)
Re[E0(6, 0, 0, 0, 0)]

+
2025 Re[E0(6, 0, 0, 0, 0)]2

y4
+ 21600 Re[E0(6, 6, 0, 0, 0, 0)]− 20

7
Re[E0(6, 0, 0, 0, 0, 0)]

+
21600 Re[E0(6, 0, 6, 0, 0, 0, 0)]

y
+

108000 Re[E0(6, 6, 0, 0, 0, 0, 0)]

y

− 45 Re[E0(6, 0, 0, 0, 0, 0, 0)]

7y
+

16200 Re[E0(6, 0, 0, 6, 0, 0, 0, 0)]

y2
(4.46)

+
81000 Re[E0(6, 0, 6, 0, 0, 0, 0, 0)]

y2
+

243000 Re[E0(6, 6, 0, 0, 0, 0, 0, 0)]

y2

− 15 Re[E0(6, 0, 0, 0, 0, 0, 0, 0)]

2y2
+

8100 Re[E0(6, 0, 0, 0, 6, 0, 0, 0, 0)]

y3

+
40500 Re[E0(6, 0, 0, 6, 0, 0, 0, 0, 0)]

y3
+

121500 Re[E0(6, 0, 6, 0, 0, 0, 0, 0, 0)]

y3

+
283500 Re[E0(6, 6, 0, 0, 0, 0, 0, 0, 0)]

y3
− 15 Re[E0(6, 0, 0, 0, 0, 0, 0, 0, 0)]

4y3
,

and similar expressions for E′3,3 and E2,4 based on eqs. (4.37) to (4.39) are provided in

appendix G.2. The resulting expressions for D
[ ]

,D
[ ]

and D
[ ]

have been checked

to satisfy the Laplace eigenvalue equations (2.55).

Finally, there is a single irreducible modular graph function of depth three at weight

six: E2,2,2 defined in eq. (4.34). Integrating its Cauchy-Riemann equation (4.40) (with

∇E2,2 spelt out in eq. (G.7)) yields

E2,2,2 =
4y6

9568125
− 2y3ζ3

10125
+
yζ5
54

+
ζ23
90

+
661ζ7
1800y

− 5ζ3ζ5
12y2

+
ζ33
6y3

+
(

4y3

3375
−2ζ3

15
+

5ζ5
2y2
−3ζ23
y3

)
Re[E0(4,0,0)]+

(
2

5
+

18ζ3
y3

)
Re[E0(4,0,0)]2− 36Re[E0(4,0,0)]3

y3

−36
(

2y

45
− ζ3
y2

+
6Re[E0(4,0,0)]

y2

)
Re
[
E0(4,0,4,0,0)]+3E0(4,4,0,0,0)+

E0(4,0,0,0,0)

360

]
−864Re[E0(4,4,0,4,0,0)]−2592Re[E0(4,4,4,0,0,0)]− 12

5
Re[E0(4,0,0,4,0,0)]

− 36

5
Re[E0(4,0,4,0,0,0)]− 84

5
Re[E0(4,4,0,0,0,0)]− 1

150
Re[E0(4,0,0,0,0,0)] (4.47)

− 1296Re[E0(4,4,0,0,4,0,0)]

y
− 3888Re[E0(4,4,0,4,0,0,0)]

y
− 7776Re[E0(4,4,4,0,0,0,0)]

y

− 432Re[E0(4,0,4,0,4,0,0)]

y
− 1296Re[E0(4,0,4,4,0,0,0)]

y
− 6Re[E0(4,0,0,0,4,0,0)]

5y

− 18Re[E0(4,0,0,4,0,0,0)]

5y
− 42Re[E0(4,0,4,0,0,0,0)]

5y

− 18Re[E0(4,4,0,0,0,0,0)]

y
−Re[E0(4,0,0,0,0,0,0)]

300y
,

which, together with E3,3,E
′
3,3 and E2,4, completes the basis of weight-six modular graph

functions under the relations in appendix F. For all the above expressions for modular

graph functions, modular invariance has been confirmed numerically.
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All the above examples confirm our conjecture that the number of loops in

a graph is an upper bound for the depth of the associated modular graph func-

tion. Said upper bound is saturated for the independent modular graph functions

D
[ ]

,D
[ ]

,D
[ ]

,D
[ ]

,D
[ ]

and D
[ ]

at weight w ≤ 6. However, D
[ ]

being of depth one (cf. eq. (2.46)) and D
[ ]

being of depth three (cf. eq. (F.1)) are

examples where the loop order exceeds the depth.

4.2.5 Laplace equation at weight six

From their representations in terms of iterated Eisenstein integrals, we infer the following

Laplace equation among modular graph functions which has not yet been spelt out in

the literature:

(∆− 2)
(
D
[ ]

− 2 E2
3−E2 E4

)
− 14

9
D
[ ]

+
16

3
D
[ ]

− 4 D
[ ]

+
284

9
E6 +

2

3
E3

2 +16 E2
3 +

12

5
E2 E4−4 E2 E2,2 = 0 . (4.48)

The combination D
[ ]

− 2 E2
3−E2 E4 along with the Laplacian is designed to absorb

contributions ∼ ∂τ Ep ∂τ Eq in eq. (4.48) with p + q = 6. Moreover, the combination

D
[ ]

− 2 E2
3−E2 E4 is selected by the formalism of ref. [11] to linearize the relations

between modular graph functions,26 as can be verified from the second equation from

below in eq. (F.1).

4.2.6 Representations of modular graph functions in terms of E rather than E0?

While all expressions for modular graph functions or their constituents have been expressed

in terms of iterated Eisenstein integrals E0 defined in eq. (2.19), we conclude this subsection

with expressions for modular graph functions in terms of iterated Eisenstein integrals E
defined in eq. (2.18), where the constant terms 2ζk of the integrands Gk are not subtracted.

At depth one, these E appear to be the more suitable language for modular graph functions

than the E0 since the polynomial term Ek ∼ yk in eq. (2.35) is absorbed in this way:

Ek =
4 (2k−3)! ζ2k−1 (4y)1−k

(k−2)! (k−1)!
− 8y(2k−1)!

k−1∑
j=0

(
2k−2−j
k−1

)
(4y)j−k

j!
Re[E(2k, 0, . . . , 0︸ ︷︷ ︸

2k−2−j

; q)] .

(4.49)

However, the analogous rearrangements at depth two convert eq. (4.44) into

E2,2 =
ζ3 |T |2

60y
+

5ζ5

12y
− ζ2

3

4y2
+

3ζ3

y2
Re[E(4, 0, 0)]− 9 Re[E(4, 0, 0)]2

y2
(4.50)

− 72 Re[E(4, 4, 0, 0)]− 36 Re[E(4, 0, 4, 0, 0)]

y
− 108 Re[E(4, 4, 0, 0, 0)]

y

26The general formalism ref. [11] assigns a so-called “primitive” version to each modular graph func-

tion which is observed to linearize all relations known up to date. We are grateful to Eric D’Hoker and

Justin Kaidi for bringing the connection between primitive modular graph functions and the Laplace equa-

tion (4.48) to our attention.
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and introduce an explicit appearance of Re τ via |T |2 = π2((Re τ)2 + (Im τ)2). Similar

observations have been made for E2,3 and examples at higher weight, so it is not clear if

representations in terms of E are preferable at generic depth.

4.3 Modular graph functions from B-cycle graph functions

In this section, we suggest a mapping between B-cycle graph functions and the correspond-

ing modular graph functions which is based on their representations via iterated Eisenstein

integrals (see subsection 3.3.5 and subsection 4.2.4, respectively).

4.3.1 Depth one

For illustrative purposes, we repeat the expressions

D
[ ]

=
y2

45
+
ζ3

y
− 12 Re[E0(4, 0)]− 6

y
Re[E0(4, 0, 0)]

D
[ ]

=
2y3

945
+

3ζ5

4y2
− 120 Re[E0(6, 0, 0)]− 180

y
Re[E0(6, 0, 0, 0)]− 90

y2
Re[E0(6, 0, 0, 0, 0)]

D
[ ]

=
y4

4725
+

5ζ7

8y3
− 1680 Re[E0(8, 0, 0, 0)]− 5040

y
Re[E0(8, 0, 0, 0, 0)] (4.51)

− 6300

y2
Re[E0(8, 0, 0, 0, 0, 0)]− 3150

y3
Re[E0(8, 0, 0, 0, 0, 0, 0)] ,

for the simplest modular graph functions which agree with the all-weight formula eq. (2.34)

for non-holomorphic Eisenstein series. These closed-string expressions will be brought into

correspondence with the analogous B-cycle graph functions eq. (3.54) modulo ζ2 on the

open-string side,

B
[ ]

=
T 2

180
− ζ3

T
− 6 E0(4, 0) +

6 E0(4, 0, 0)

T
mod ζ2

B
[ ]

= − T 3

3780
+

3ζ5

2T 2
− 60 E0(6, 0, 0) +

180 E0(6, 0, 0, 0)

T
− 180 E0(6, 0, 0, 0, 0)

T 2
mod ζ2

B
[ ]

=
T 4

75600
− 5ζ7

2T 3
− 840 E0(8, 0, 0, 0) +

5040 E0(8, 0, 0, 0, 0)

T
(4.52)

− 12600 E0(8, 0, 0, 0, 0, 0)

T 2
+

12600 E0(8, 0, 0, 0, 0, 0, 0)

T 3
mod ζ2 .

As in eq. (3.57), the notion of “mod ζ2” refers to a representation of all the τ -dependence via

T and E0(k), where all terms of the form ζn2 T
m E0(k) with n ≥ 1 and m ∈ Z are suppressed.

In comparing the above expressions for modular graph functions and B-cycle graph

functions, both iterated Eisenstein integrals and Laurent polynomials in y or T exhibit

striking similarities in their coefficients: every single term in eq. (4.52) will find a corre-

spondent in eq. (4.51) once we replace

T → −2y , E0(2k, 0, . . .)→ 2 Re[E0(2k, 0, . . .)] , ζ2k+1 → 2ζ2k+1 , ζ2k → 0 . (4.53)

The τ dependence of the E0(k) through their q-series eq. (2.21) is understood to be unaf-

fected by the prescription T → −2y. The same correspondence has been verified between
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the depth-one modular graph functions D
[ ]

, D
[ ]

and their B-cycle counterparts

B
[ ]

, B
[ ]

, where the latter has been inferred from the A-cycle counterpart of the

relations in appendix F.

4.3.2 General form

Both the doubling of odd zeta-values in eq. (4.53) and the suppression of ζ2 in matching B-

cycle graph functions with non-holomorphic Eisenstein series are reminiscent of the single-

valued projection of MZVs. From the above examples associated with one-loop graphs, it

is tempting to study the following generalization of eq. (4.53)27

esv :


(i) T → − 2y

(ii) E0(k1, k2, . . . , kr)→ 2 Re[E0(k1, k2, . . . , kr)], k1 6= 0

(iii) ζn → ζsv
n

(4.54)

to arbitrary MZVs and iterated Eisenstein integrals. Note that part (i) is in fact a special

case of Brown’s single valued map for multiple polylogarithms [79], because 2T = log q is

sent to −4y = log q + log q.28 As before, part (i) is understood to not act on the q-series

eq. (2.21) of E0(k, . . .) with k 6= 0. Moreover, part (iii) motivates our earlier choices to

occasionally display B-cycle graph function modulo terms sent to zero by the esv-map such

as ζ2T
m E0(k). As the key result of this section, we conjecture that, once a B-cycle graph

function is suitably expressed in terms of T and E0(k), the esv-map in eq. (4.54) yields the

corresponding modular graph function,

esv B[G] = D[G] . (4.55)

The notion of suitably expressing B-cycle graph function in terms of T and E0(k) will be

made more precise in the next subsection 4.3.3 using examples at depth two and three.

We must introduce this notion, because the esv-map is a map on iterated integrals only if

we consider them as symbols and forget about the algebraic relations among them. The

reason is, that these relations would not be respected by part (ii) of eq. (4.54).

Since open- and closed-string amplitudes comprise generating functions of the respec-

tive graph functions, eq. (4.55) immediately implies the main result of this work — the

connection eq. (1.6) between the four-point open- and closed-string integrals eqs. (3.6)

and (2.25).

Let us already note here that the esv-map eq. (4.54) is consistent with the truncation

eq. (4.13) of A-cycle graph functions selected by the replacement in eq. (4.3): using the

result eq. (2.13), it follows that adding any term ζn ω(m) contained in the space X defined

in section 4.1 to an A-cycle graph function will result in terms proportional to ζnT
m E0(. . .)

27As pointed out in appendix D.2, one can always write E0’s in terms of powers of T and E0’s with k1 6= 0.
28The reason why we define T = πiτ instead of 2πiτ is that we want its image under the single-valued

map to be consistent with the choice of variable L := −2y operated in refs. [28, 29].
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in the corresponding B-cycle graph function,29 which are in turn annihilated by part (iii)

of eq. (4.54). In other words, all terms contained in X will yield zero upon taking their

modular transformation and applying the rules eq. (4.54) afterwards. Accordingly, the

observation of subsection 4.1 that A-cycle graph functions — after omission of terms from

the space X and replacing ζn → ζsv
n — satisfy the relations of modular graph functions, is

made plausible by eq. (4.55).

4.3.3 Higher depth

We shall now discuss the representations of B-cycle graph functions in which the esv-

map eq. (4.55) to modular graph functions is applicable. At depth two, it is instructive

to compare the expression eq. (4.44) for E2,2 = D
[ ]

− 9
10 D

[ ]
with the analogous

B-cycle graph function

B
[ ]

− 9
10 B

[ ]
= − T 4

324000
− Tζ3

180
− 5ζ5

12T
− ζ2

3

4T 2

+
( T

30
+

3ζ3

T 2

)
E0(4, 0, 0)− 9 E0(4, 0, 0)2

T 2
− 36 E0(4, 4, 0, 0)− 1

10
E0(4, 0, 0, 0) (4.56)

+
36 E0(4, 0, 4, 0, 0)

T
+

108 E0(4, 4, 0, 0, 0)

T
+
E0(4, 0, 0, 0, 0)

10T
mod ζ2 ,

see eq. (3.56) for the terms ∼ ζ2 suppressed by the esv-map. In the present form of

eq. (4.56), the esv-map in eq. (4.54) correctly reproduces the corresponding modular graph

function in eq. (4.44). However, as already anticipated in the previous section, a ma-

jor shortcoming is that the esv-map in eq. (4.54) is not compatible with shuffle multi-

plication: rewriting eq. (4.56) via E0(4, 0, 0)2 = 2 E0(4, 0, 0, 4, 0, 0) + 6 E0(4, 0, 4, 0, 0, 0) +

12 E0(4, 4, 0, 0, 0, 0) results in a different image under the esv-map. When performing this

shuffle multiplication, one could at best hope to make contact with the more cumbersome

representation of E2,2 in eq. (4.41) with spurious iterated Eisenstein integrals of length six,

but it is not clear how to extend the esv-map such as to generate Im[E0(k)].

In the depth-two case at hand, one can still argue that the representation in eq. (4.56)

is optimized with respect to the length of the iterated Eisenstein integrals and therefore

particularly canonical: there is currently no E0(. . .) at length six, provided that the shuffle

multiplication of E0(4, 0, 0)2 is not performed.

At weight five, the expression eq. (4.45) for the two-loop modular graph function E2,3

can be reached by applying eq. (4.54) to the representation eq. (3.57) of the corresponding

B-cycle graph function. For the first non-trivial product E0(4, 0, 0) E0(6, 0, 0, 0, 0) of iterated

Eisenstein integrals in eq. (3.57), the absence of E0(k) at length eight in the remaining

equation suggests to not perform this shuffle multiplication. However, the other product

E0(4, 0, 0) E0(6, 0, 0, 0) in eq. (3.57) does not admit a comparable argument to leave it inert:

said B-cycle graph function inevitably contains E0(k) at length seven, independent on the

treatment of E0(4, 0, 0) E0(6, 0, 0, 0).

29For instance, even though ζ2 ωA(0, 0, 1, 0 |τ) = − ζ3
8

+ 3
4
E0(4, 0, 0; τ) appears to introduce a term pro-

portional to ζ3 which is preserved by the single-valued projection, the modular image ζ2 ωA(0, 0, 1, 0 |− 1
τ

) =
π6

720T3 + π4

144T
+ π2T

720
+ π2ζ3

8T2 − 3π2 E0(4,0,0;τ)
4T2 and thereby the contribution to a B-cycle graph function is sent

to zero by the esv-map eq. (4.54) term by term.
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We expect that each B-cycle graph function admits a scheme of performing selected

shuffle multiplications such that the esv-map eq. (4.54) converts it to the corresponding

modular graph function via eq. (4.55). In absence of MZVs of depth ≥ 2, one may refor-

mulate the conjecture eq. (4.55) in a way that is insensitive to the issues with the shuffle

multiplication: given a representation of D[G] in terms of y, ζ2k+1 and Re[E0(k)], reversing

the rules of eq. (4.54) via y → −T
2 , ζ2k+1 → ζ2k+1

2 and Re[E0(k)] → E0(k)
2 is claimed to

yield the corresponding B[G] modulo ζ2.

It would be desirable to identify a general criterion on the representations of B-cycle

graph functions that are tailored to the esv-map. It is encouraging to observe that in-

appropriate ways of performing shuffle multiplications before applying the esv-map seem

to always result in a breakdown of modular invariance. Also, note that esv is well de-

fined at depth one since any use of shuffle multiplication would necessarily introduce cases

E0(k1, . . .) with k1 = 0 that are explicitly excluded from eq. (4.54).

We have checked that the independent modular graph functions E3,3,E
′
3,3,E2,4 and

E2,2,2 at weight six can be obtained through the esv-map from suitable representations of

the corresponding B-cycle graph functions. This adds a depth-three example to support

the general conjecture eq. (4.55).

4.3.4 Expressing esv rules in terms of E0 versus E

One very obvious question is whether one can find a formulation of the esv-map in eq. (4.54)

which applies to iterated Eisenstein integrals E rather than E0. It has been noted in

eq. (4.49) that the leading term in the Laurent polynomial of non-holomorphic Eisen-

stein series cancels when E0 are collectively traded for E . Indeed, inserting E0(4, 0; τ) =

E(4, 0; τ) − π2τ2

360 and E0(4, 0, 0; τ) = E(4, 0, 0; τ) − iπ3τ3

540 into the B-cycle graph function

eq. (4.52) gives rise to the analogous cancellation of the term T 2,

B
[ ]

= −ζ3

T
− 6 E(4, 0) +

6 E(4, 0, 0)

T
mod ζ2 . (4.57)

Given that this effect persists in one-loop graph functions of higher weight, it is conceivable

that replacing the esv-rule (ii) by E(k) → 2 Re[E(k)] correctly reproduces all En from B-

cycle graph functions in terms of iterated Eisenstein integrals E .

At depth two, however, there is a discouraging example: when replacing E0 by combi-

nations of E in eq. (4.56), one arrives at a shorter expression

B
[ ]

− 9
10 B

[ ]
= − 5ζ5

12T
− ζ2

3

4T 2
+

3ζ3 E(4, 0, 0)

T 2
− 9 E(4, 0, 0)2

T 2
− 36 E(4, 4, 0, 0)

+
36

T
(E(4, 0, 4, 0, 0) + 3 E(4, 4, 0, 0, 0)) mod ζ2 , (4.58)

which should be compared with the representation eq. (4.50) of the modular graph function

E2,2. It turns out that there is no B-cycle analogue of the term E2,2 = ζ3|T |2
60y + . . . in

eq. (4.50), which was already mentioned as a drawback of representations in terms of E . We

hope that this particular term in the expression for E2,2 will shed light on a reformulation

of the esv-map which respects shuffle multiplication.
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4.3.5 Zero modes

We recall that (by abuse of nomenclature) the zero mode of a modular graph function (see

eq. (2.37))

D[G] =
∞∑

m,n=0

cGm,n(y)qmq̄n, (4.59)

is defined to be d[G] := cG0,0(y). The analogue of the zero mode for a B-cycle graph function

B[G] =
∞∑
m=0

bGm(T )qm (4.60)

will be denoted as b[G] := bG0 (T ) and is also referred to as a constant term in appendix B.

The map esv is well defined on zero modes, as it does not present the problem of being

dependent on the way we write B[G] in terms of iterated Eisenstein integrals E0(k; q) =

O(q). Hence, the conjectural formula

esv b[G] = d[G] (4.61)

is well defined, and it has been verified on all examples up to weight six. Moreover, in

order to confirm part (iii) of the esv-map for an MZV of depth 3 and weight 11, where the

sv-map acts in a non-trivial way, eq. (4.61) has been checked to hold for the weight-seven

examples b
[ ]

and d
[ ]

spelt out in eqs. (3.58) and (2.45).

Hence, we propose eq. (4.61) as a conjectural method to compute the zero modes d[G]

of modular graph functions. Expressions for the constant terms b[G] of B-cycle graph func-

tions can be calculated using the methods described in appendix B. There is no conceptual

bottleneck to addressing graphs of arbitrary complexity in this way, though the amount of

data in intermediate steps of the calculations in appendix B imposes practical limitations30

for weights larger than six. As pointed out in subsection 3.3, the analytic computation of

b[G] bypasses the necessity to numerically determine the multiple modular values arising in

the modular transformations of iterated Eisenstein integrals described in subsection 3.3.3

as well as the integration constants in the method outlined in subsection 3.3.4.

5 Non-planar A-cycle graph function

As will be demonstrated in this section, the graphical organization of open-string α′-

expansions is not tied to planar one-loop amplitudes. Even for non-abelian open-string

states, the α′-expansions of the non-planar open-string amplitudes can be conveniently ex-

pressed via mild generalizations of A-cycle graph functions which we will call non-planar

A-cycle graph functions. As shown in ref. [25], non-planar α′-expansions are composed of

A-cycle eMZVs, and one-particle reducible graphs will be shown to again decouple once one

employs a suitable choice of the Green function. Most surprisingly, planar and non-planar

30The expression for b
[ ]

in eq. (3.58) has been obtained by modular transformation of the A-cycle

graph function A
[ ]

, involving numerical evaluations of multiple modular values, see section 3.3.3.
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A-cycle graph functions turn out to be indistinguishable under the esv-map eq. (4.54),

i.e. under the correspondence eq. (1.5) between open-string graph functions and modular

graph functions for the closed string. As will be detailed in section 5.3, this gives rise to

expect that planar open-string amplitudes carry the complete information on the closed

string, without any need for non-planar input.

5.1 Non-planar open-string integrals

Non-planar one-loop amplitudes of both abelian and non-abelian open-string states com-

prise the integrals [80]

Mopen
12|34(sij |τ) :=

∫ 1

0
dz2

∫ 1

0
dz3

∫ 1

0
dz4 exp

s12P12 + s34P34 +
2∑
i=1

4∑
j=3

sijQij

 (5.1)

Mopen
123|4(sij |τ) :=

∫ 1

0
dz2

∫ 1

0
dz3

∫ 1

0
dz4 exp

 3∑
i<j

sijPij +

3∑
j=1

sj4Qj4

 , (5.2)

which remain to be integrated over the modular parameter τ ∈ iR of the respective cylinder

worldsheet. The subscripts 12|34 and 123|4 refer to the distribution of the open-string states

over the two boundaries of the cylinder. When performing the τ -integral for Mopen
12|34(sij |τ)

an additional factor of qα
′k1·k2/2 needs to be taken into account.31 Given that none of

the worldsheet boundaries in eqs. (5.1) and (5.2) comprises more than three punctures,

the integrals are universal to both abelian and non-abelian open-string states. However,

generic non-planar integrals at n ≥ 5 points will necessitate a distinction between abelian

and non-abelian states.

In contrast to the integrals eqs. (3.6) and (3.7) from the planar abelian sector, eqs. (5.1)

and (5.2) contain a second species of propagators: Qij . This propagator connects punc-

tures on different boundaries of the cylinder, and its representation following from Pij in

eq. (3.8) reads

Q1j = ω
(

1, 0
τ/2, 0

)
− Γ

(
1
τ/2 ; zj

)
, Qij = ω

(
1, 0
τ/2, 0

)
− Γ

(
1

zj+τ/2 ; zi

)
− Γ

(
1
τ/2 ; zj

)
. (5.3)

The planar and non-planar propagators Pij and Qij given by eqs. (3.8) and (5.3) are

related to the Green functions employed in section 4 of ref. [25] through a shift by ωA(1, 0).

Momentum conservation
∑4

i<j sij = 0 again guarantees that the Green functions of the

reference and the present expressions for Pij and Qij yield the same integrand in eqs. (5.1)

and (5.2). As a key benefit of the representations eqs. (3.8) and (5.3) of Pij and Qij , they

satisfy eq. (3.9) and ∫ 1

0
dzi Qij = 0 , (5.4)

which furnish a suitable starting point to again organize the α′-expansion of eqs. (5.1)

and (5.2) in terms of one-particle irreducible graphs. As elaborated on in ref. [25], the

31The integral I12|34 expanded in ref. [25] is related to eq. (5.1) via I12|34 = qα
′k1·k2/2Mopen

12|34.
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non-planar propagator introduces twisted eMZVs in intermediate steps,

ω
( n1, n2, ..., nr
b1, b2, ..., br

)
:= Γ

( nr nr−1 ... n1

br br−1 ... b1 ; 1
)
, (5.5)

which drop out from the final expressions such as32

Mopen
12|34(sij |τ) = 1+s2

12

(7ζ2

6
+2ωA(0,0,2)

)
−2s13s23

(ζ2

3
+ωA(0,0,2)

)
(5.6)

−4ζ2 ωA(0,1,0,0)s3
12+s12s13s23

(ζ3

2
− 5

3
ωA(0,3,0,0)−4ζ2ωA(0,1,0,0)

)
+O(α′4)

Mopen
123|4(sij |τ) = 1+(s2

12+s12s23+s2
23)
(7ζ2

6
+2ωA(0,0,2)

)
(5.7)

+s12s23s13

(ζ3

2
+4ζ2ωA(0,1,0,0)− 5

3
ωA(0,3,0,0)

)
+O(α′4) ,

also see [81] for the linear orders in sij . Moreover, all-order expressions for the τ → i∞
limit of eq. (5.1) and eq. (5.2) have been given in [81] and [82], respectively.

5.2 Examples of non-planar A-cycle graph functions

The definition of planar A-cycle graph functions in section 3.1 has a natural extension

to the non-planar setup. Monomials in Pij and Qij from the expansion of the integrand

in eqs. (5.1) and (5.2) are translated into graphs according to the following rules: each

integration variable in the open-string measure eq. (3.7) is again represented by a vertex,

and the two kinds of propagators Pij and Qij in eqs. (3.8) and (5.3) between vertices i and

j are visualized by two types of undirected edges.

A convenient way to track the two types of edges stems from the distribution of the

punctures in Mopen
12|34(sij |τ) and Mopen

123|4(sij |τ) into two sets according to the vertical-bar

notation. These two sets correspond to the location of the punctures on two different

boundaries of a cylindrical worldsheet, and the separation of the boundaries can be incor-

porated into the graphs through the dashed line in figure 4. Then, propagators Qij and

Pij correspond to edges that cross and do not cross the dashed line, respectively. The

generalization of eq. (2.29) then reads

Pij =
i j , Qij =

i j . (5.8)

At weight two and three, for instance, one will have to evaluate the following non-planar

A-cycle graph functions

A
[ ]

=

∫
dµopen

2 Q2
12 , A

[ ]
=

∫
dµopen

2 Q3
12 , A

[ ]
=

∫
dµopen

3 P12Q13Q23

(5.9)

32The Mopen
123|4 is defined as twice the integral I123|4 expanded in ref. [25] in order to illustrate the parallels

to the α′-expansion of Mopen
12|34, see in particular section 5.3. Also note the relative minus sign in the

definition of the Mandelstam variables in this work and ref. [25] which affects the third order in α′ in the

subsequent expansions.
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•z1 •z2

•z3•z4

P12

Q23

P34

Q14

Q13

Q24

•z1 •z2

•z3•z4

P12

P23

Q34

Q14
P13

Q24

Figure 4. In the framework of non-planar A-cycle graph functions, the two types of propagators

Qij and Pij are represented by edges (drawn as solid lines) which do and do not cross the dashed

line, respectively. Said dashed line tracks the distribution of the punctures in non-planar open-

string amplitudes over two cylinder boundaries. The situations for the non-planar integrals Mopen
12|34

and Mopen
123|4 are depicted in the left and right panel, respectively.

in addition to their planar counterparts A
[ ]

,A
[ ]

and A
[ ]

. The essential steps

of their computation can be assembled from ref. [25], see in particular appendix I.1 of the

reference, with the following results in terms of untwisted A-cycle eMZVs:

A
[ ]

= ωA(0, 0, 2) +
ζ2

3
(5.10)

A
[ ]

=
ζ3

2
− 1

3
ωA(0, 3, 0, 0)− 4 ζ2 ωA(0, 1, 0, 0) (5.11)

A
[ ]

= −1

3
ωA(0, 3, 0, 0) . (5.12)

From weight four on, certain graph topologies admit several non-planar A-cycle graph

functions which correspond to different distributions of punctures over two boundaries or

different numbers of Qij propagators. For instance, there are two and three non-planar

analogues to A
[ ]

and A
[ ]

, respectively,

A
[ ]

=

∫
dµopen

2 Q4
12 (5.13)

A
[ ]

=

∫
dµopen

3 P 2
12Q13Q23 , A

[ ]
=

∫
dµopen

3 Q2
12P13Q23 (5.14)

A
[ ]

=

∫
dµopen

4 P12Q23P34Q41 , A
[ ]

=

∫
dµopen

4 P12P23Q34Q41

A
[ ]

=

∫
dµopen

4 Q12Q23Q34Q41 . (5.15)

5.3 Comparing α′-expansions of planar and non-planar integrals

By means of momentum conservation, the α′-expansion eqs. (5.6) and (5.7) of the non-

planar integrals eqs. (5.1) and (5.2) can be recovered from the following planar and non-
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planar A-cycle graph functions:

Mopen
12|34(sij |τ) = 1+s2

12

(
A
[ ]

+A
[ ])

−2s13s23 A
[ ]

+
s3

12

3

(
A
[ ]

−A
[ ])

+s12s13s23

(
A
[ ]

+4A
[ ])

+O(α′4) , (5.16)

Mopen
123|4(sij |τ) = 1+(s2

12+s12s23+s2
23)
(
A
[ ]

+A
[ ])

+s12s13s23

(1

2
A
[ ]

+
1

2
A
[ ]

+A
[ ]

+3A
[ ])

+O(α′4) . (5.17)

Clearly, when identifying the two boundaries and formally sending A
[ ]

→ A
[ ]

,

A
[ ]

→ A
[ ]

and A
[ ]

→ A
[ ]

, both eq. (5.16) and eq. (5.17) reduce to the

integral eq. (3.11) of the abelian planar amplitude. Nevertheless, the expressions eqs. (5.16)

and (5.17) for non-planar integrals also apply to non-abelian open-string amplitudes.

It is tempting to compare the eMZV representation of non-planar A-cycle graph func-

tions with their planar counterparts. The above examples in eqs. (5.10) to (5.12),

A
[ ]

−A
[ ]

=
1

2
ζ2

A
[ ]

−A
[ ]

= 12 ζ2 ωA(0, 1, 0, 0) (5.18)

A
[ ]

−A
[ ]

= 2 ζ2 ωA(0, 1, 0, 0)

give rise to the following observation: to the orders considered, planar and non-planar A-

cycle graph functions associated with the same graph differ by terms in the space X defined

in eq. (4.4) and thus lead to identical results after applying eq. (4.3). This is furthermore

supported by the weight-four example

A
[ ]

= 216 E0(4, 0, 4, 0)− 432 E0(4, 4, 0, 0)− 3024 E0(8, 0, 0, 0) mod ζ2 (5.19)

which again matches the expression for A
[ ]

in eq. (3.20) modulo terms in X and vali-

dates the observation beyond one-loop graphs. We therefore expect the matching of planar

and non-planar A-cycle graph functions modulo terms in X to persist at higher weight

and depth,

A[G] = A[ G· · ·· · · ] mod X , (5.20)

where G· · ·· · · represents an arbitrary non-planar generalization33 of the graph G. This conjec-

ture also applies to A-cycle graph functions eq. (3.12) and their non-planar generalizations

with n ≥ 5 vertices. Still, this class of integrals will not capture all the terms in the

α′-expansions of five-point and higher-multiplicity amplitudes of the open superstring.

As explained in the paragraph below eq. (4.55), the modular S-transformation maps

terms contained in the space X to terms sent to zero by esv in eq. (4.54). Hence, given the

definition of non-planar B-cycle graph functions

B[ G· · ·· · · ] := A[ G· · ·· · · ]
∣∣
τ→− 1

τ
, (5.21)

33For instance, G· · ·· · · can be either or when G is taken to be .
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in direct analogy with the planar ones eq. (3.14), our conjecture eq. (5.20) implies that

modular graph functions can also be constructed from non-planar open-string graph func-

tions

esv B[ G· · ·· · · ] = esv B[G] = D[G] . (5.22)

At the level of their generating functions, this leads to the following conclusion: when

the closed-string four-point amplitude is obtained from open-string input through the esv-

projection as in eq. (1.6), then the non-planar sectors do not carry any additional informa-

tion beyond the planar sector for abelian open-string states:

esv Mopen
4 (sij |− 1

τ ) = esv Mopen
12|34(sij |− 1

τ ) = esv Mopen
123|4(sij |− 1

τ ) . (5.23)

In other words — the esv-map identifies non-planar open-string integrals with planar

abelian ones! It would be interesting to understand this in the light of monodromy re-

lations among one-loop open-string amplitudes [81, 83].

6 Conclusions

In this work, we have identified new connections between building blocks of open- and

closed-string one-loop amplitudes at the level of their α′-expansions. In view of the relation

between the respective tree-level amplitudes through the single-valued projection of MZVs,

we have proposed an elliptic version of a single-valued map called “esv”. The latter acts

on the eMZVs in symmetrized one-loop open-string integrals and yields the corresponding

integrals of the closed string. This connection between open and closed strings through the

esv-map has been explicitly verified at the leading seven orders in α′ and suggests to envision

the following scenario in the long run: closed-string α′-expansions at generic multiplicity

and loop order might be entirely derivable from open-string data using suitable operations.

Our construction is based on a graphical organization of the α′-expansions of planar

and non-planar open-string amplitudes: convenient arrangements of the genus-one Green

function cancel the contributions from one-particle reducible graphs which has already

been used to simplify closed-string α′-expansions. For each one-particle irreducible graph,

we have defined a meromorphic A-cycle graph function comprising eMZVs, its modular

S-transformation called B-cycle graph function as well as non-planar generalizations. Rep-

resenting these open-string constituents in terms of iterated Eisenstein integrals leads to

a straightforward identification through the esv-map with the modular graph functions

governing the closed-string α′-expansion.

Expressing modular graph functions in terms of iterated Eisenstein integrals gives rise

to new results on their Fourier expansions beyond the simplest cases of non-holomorphic

Eisenstein series. Furthermore, our iterated-Eisenstein-integral representations automati-

cally manifest all relations between modular graph functions and their Laplace equations

at the weights under consideration. We expect that this language is suitable to represent

the general systematics of indecomposable modular graph functions and their network of

Laplace eigenvalue equations.

Having applied methods from the open string to modular graph functions on the closed-

string side, it would be interesting to try the converse: the representation of modular
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graph functions in terms of nested lattice sums, which is immediately accessible from their

definition through the genus-one Green function, should have an echo for eMZVs. In

particular, tentative lattice-sum representations of A-cycle and B-cycle eMZVs are likely

to offer new perspectives on their algebraic and differential relations and new insights on

the esv-map.

Moreover, it would be desirable to connect the present proposal for the esv-map with

the framework developed by Brown in refs. [28, 29, 59]. This would make clear whether

our observations hold true for any graph or should be corrected at higher depth.

While the present results are restricted to scattering amplitudes of four external states,

a natural follow-up question concerns the generalization to n-point one-loop amplitudes.

Since the coefficients of the Kronecker-Eisenstein series capture the all-multiplicity inte-

grands [23], the n-point α′-expansion for both open and closed strings is expressible in

terms of iterated Eisenstein integrals and therefore accessible to the proposed esv-map.

However, it remains to identify the correspondence between cyclic orderings in higher-

point open-string amplitudes and the additional functions of the punctures in closed-string

integrands at five and more points [10, 62–64]. The recent double-copy representation [72]

of open-string integrands is expected to play a key role in this endeavor.

Relations between open- and closed-string amplitudes at higher genus should be en-

coded in a similar organization scheme of the integrals over the punctures. A strategic

path at genus two would be to express the moduli-space integrand for the Zhang-Kawazumi

invariant [84, 85] and its recent generalizations to higher orders in α′ [86] in terms of open-

string quantities. For this purpose, higher-genus generalizations of eMZVs along with the

appropriate analogues of iterated Eisenstein integrals seem to be a suitable framework.

Finally, both the α′-expansion of closed-string one-loop amplitudes and the iterated-

integral description of modular graph functions have important implications for the non-

perturbative S-duality of type-IIB superstrings [87]: this duality symmetry connects am-

plitudes of different loop orders and incorporates their non-perturbative completion. It

would be desirable to express the underlying modular invariant functions of the axion-

dilaton field — non-holomorphic Eisenstein series at half-odd integer arguments [88, 89]

and beyond [90, 91] — via esv-projected open-string quantities. This would set the stage

for taking maximal advantage of S-duality to infer exact and non-perturbative results on

the low-energy regime of type-II superstrings at unprecedented orders in α′.

Acknowledgments

First of all, we are very grateful to Nils Matthes for collaboration in early stages of the

project. We would like to thank Francis Brown, Axel Kleinschmidt, Eric D’Hoker, Nils

Matthes and Pierre Vanhove for comments on the draft and various helpful discussions.

In addition, we are grateful to Eric D’Hoker and Justin Kaidi for several email exchanges.

We would like to thank the Kolleg Mathematik und Physik Berlin for support in various

ways and the Hausdorff Research Institute for Mathematics for hospitality while finalizing

this article.

– 50 –



J
H
E
P
0
1
(
2
0
1
9
)
1
5
5

JB and OS would like to thank the Munich Institute for Astro- and Particle Physics for

hospitality and providing a stimulating atmosphere during a workshop “Mathematics and

Physics of Scattering Amplitudes” in August and September 2017, where a substantial part

of this project was realized. This research was supported in part by the National Science

Foundation under Grant No. NSF PHY17-48958, and we are grateful to the KITP Santa

Barbara for providing a vibrant research environment during the workshop “Scattering

Amplitudes and Beyond”.

The research of OS was supported in part by Perimeter Institute for Theoretical

Physics. Research at Perimeter Institute is supported by the Government of Canada

through the Department of Innovation, Science and Economic Development Canada and

by the Province of Ontario through the Ministry of Research, Innovation and Science.

The research of FZ was supported by the Max Planck Institute for Mathematics, by

a French public grant as part of the Investissement d’avenir project, reference ANR-11-

LABX-0056-LMH, LabEx LMH, and by the People Programme (Marie Curie Actions) of

the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant

agreement n. PCOFUND-GA-2013-609102, through the PRESTIGE programme coordi-

nated by Campus France.

A Translating between graphs and notations for modular graph func-

tions

In this appendix, we spell out the dictionary between the graphical notation D[G] for

modular graph functions used in this work and the D- and C-notations introduced ref. [2]

(see also appendix C of [63]).

B Constant term of B-cycle eMZVs

As explained in detail in subsection 2.3 in ref. [24], the constant term of an A-cycle eMZV

can be calculated using a method developed in refs. [22, 76]. In short, the construction

relies on comparing the properly regulated generating series of A-cycle eMZVs, the elliptic

KZB associator A(τ)

eπi[y,x]A(τ) :=
∑
r≥0

(−1)r
∑

n1,n2,...,nr≥0

ωA(n1, n2, . . . , nr |τ)adnrx (y) . . . adn2
x (y)adn1

x (y) ,

(B.1)

to its asymptotic expansion as τ → i∞ [76]

A(τ) = Φ(ỹ, t) e2πiỹ Φ(ỹ, t)−1 +O(e2πiτ ) . (B.2)

Taking the limit τ → i∞ in eq. (B.1) amounts to replacing the full eMZV ωA(n1, . . . , nr |τ)

with its constant part ωA,0(n1, . . . , nr) := limτ→i∞ ωA(n1, . . . , nr |τ), which is the quantity

of interest here.

Comparison between eqs. (B.1) and (B.2) is done for coefficients of words built from

the letters x and y, which in turn denote generators of a complete and free algebra C〈〈x, y〉〉,
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Graph D-notation C-notation

D2 = E2 C1,1

D3 C1,1,1

D111 = E3 C2,1

D4 C1,1,1,1

D211 C2,1,1

D1111 = E4 C3,1

D5 C1,1,1,1,1

D221 -

D311 C2,1,1,1

D2111 C3,1,1

= D′1111 C2,2,1

D11111 = E5 C4,1

D511 C2,1,1,1,1,1

Graph D-notation C-notation

D6 C1,1,1,1,1,1

D411 C2,1,1,1,1

D321 -

D222 -

D3111 C3,1,1,1

D2211 -

D′2111 -

D′′1111 C2,2,1,1

D×1111 -

D21111 C4,1,1

= D′11111 C3,2,1

D11,11,11 C2,2,2

D111111 = E6 C5,1

Table 1. Different notations for modular graph functions in various publications.

whose multiplication is concatenation and adx(y) := [x, y]. Equation (B.2) takes its concise

and short form only after defining additional auxiliary letters

t = [y, x] , ỹ = − adx
e2πiadx − 1

(y) . (B.3)

Finally, Φ in eq. (B.2) denotes the Drinfeld associator [92–94]

Φ(e0, e1) :=
∑

W∈〈e0,e1〉

ζ (Ŵ ) ·W . (B.4)

The sum over W ∈ 〈e0, e1〉 runs over all non-commutative words built from letters e0 and

e1. The operation ˆ acts on a word W by replacing letters e0 and e1 by 0 and 1, respectively.

The notion ζ (Ŵ ) refers to shuffle-regularized MZVs [95] which are uniquely determined

from eq. (1.1), the shuffle product and the definition ζ (0) = ζ (1) = 0. Accordingly, the

first couple of terms of Φ(e0, e1) are given by

Φ(e0, e1) = 1− ζ2[e0, e1]− ζ3[e0 + e1, [e0, e1]] + . . . . (B.5)

Numerous results for constant terms have been calculated and noted in ref. [24].
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For B-cycle eMZVs, an analogous construction does exist. Considering the expansion

of B-cycle eMZVs, this time it is not a constant term, but rather a Laurent polynomial

ωB,0(n1, . . . , nr |τ) in τ which comes with the term q0 in the expansion

ωB(n1, . . . , nr |τ) = ωB,0(n1, . . . , nr |τ) +
∞∑
k=1

ωB,k(n1, . . . , nr |τ) qk , (B.6)

see eq. (2.12). The B-cycle analogue of the A-cycle associator in eq. (B.1) reads [22]

eπi[y,x]B(τ) :=
∑
r≥0

(−1)r
∑

n1,n2,...,nr≥0

ωB(n1, n2, . . . , nr |τ)adnrx (y) . . . adn2
x (y)adn1

x (y) .

(B.7)

While taking the limit τ → i∞ in the above equation will again replace ωB by ωB,0,

obtaining the B-cycle analogue of eq. (B.2) takes a little more effort. In ref. [22], it was

shown that the comparison ought to be done between the (τ → i∞)-limit of eq. (B.7) and

B(τ) = exp

(
−2πi

τ
e+

)
Φ(−ỹ − t, t)e2πixe2πiỹτΦ−1(ỹ, t) +O(e2πi(1−ε)τ ) , (B.8)

where the introduction of an arbitrary ε > 0 is needed to account for the suppressed terms

of the form τ lqk with k, l ≥ 1. The new ingredient in comparison to eq. (B.2) is the

derivation e+, which acts on algebra generators x and y via

e+(x) = 0 and e+(y) = x .

The term ωB,0(n1, . . . , nr |τ) in the expansion eq. (B.6) of B-cycle eMZVs can then be

obtained by equating eqs. (B.7) and (B.8) and isolating the coefficients of a given word

in adnix (y).

For instance, applying this procedure to the simplest B-cycle graph function

B
[ ]

=
1

2

ωB(0, 0, 2)2

τ2
− 1

2

ωB(0, 0, 0, 0, 4)

τ
− ωB(0, 0, 0, 2, 2)

τ

+
7

3
ζ2
ωB(0, 0, 2)

τ
− 14ζ2

ωB(0, 0, 0, 0, 2)

τ3
+

301ζ4

180
(B.9)

involving eMZVs of depth two, we arrive at the constant term

b
[ ]

=
T 4

113400
+
T 2ζ2

540
− Tζ3

180
+

37ζ4

180
− 5ζ5

12T
(B.10)

+
29ζ6

16T 2
− ζ2

3

4T 2
− 9ζ7

4T 3
+

7ζ2ζ5

T 3
− 3ζ3ζ4

2T 3
+

28ζ8

3T 4
,

and the same can be repeated at higher weight.

C Expanding S-transformed A-cycle eMZVs

This appendix is dedicated to a proof of our observation on the expansion eq. (2.13) of

S-transformed A-cycle eMZVs: the coefficients of a given (2πiτ)lqk (with l ∈ Z and k ≥ 0)

in the expansion of ωA(n1, n2, . . . , nr | − 1
τ ) around the cusp are claimed to be Q-linear
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combinations of MZVs.34 This claim is essential in subsection 4.3, where we show that

terms from the space X defined in eq. (4.4) are annihilated by the esv-map after a modu-

lar transformation.

Using eqs. (2.11) and (2.12), we can write

ωA(n1, n2, . . . , nr |− 1
τ ) =

n1+···+nr∑
l=1−r

τ l
∞∑
k=0

b̃k,l(n1, n2, . . . , nr)q
k , (C.1)

where the coefficients b̃k,l are Q[(2πi)±1]-linear combinations of MZVs and related to the

coefficients in eq. (2.12) via bk,l = b̃k,l+n1+···nr−r. What we need to prove is that ck,l :=

b̃k,l/(2πi)
l are Q-linear combinations of MZVs. The proof is divided into two parts. In

appendix C.1, the setup of appendix B will be used to prove that the ck,l at k = 0 are

Q-linear combinations of MZVs. Then, the analogous statement for ck,l at k > 0 will be

deduced from the differential equation of eMZVs in appendix C.2, which together with the

previous step implies our claim for all k.

C.1 The Laurent polynomial

For the coefficients bk,l(n1, n2, . . . , nr) of the B-cycle eMZV ωB(n1, n2, . . . , nr |τ) in

eq. (2.12), it will now be shown that b0,l/(2πi)
l+n1+···+nr−r is a Q-linear combination of

MZVs. This implies the above claim at k = 0.

The B-cycle eMZV ωB(n1, n2, . . . , nr |τ) can be obtained as the coefficient of the word

adnrx (y) . . . adn1
x (y) in the B-elliptic associator eq. (B.7). In the degeneration eq. (B.8) of the

associator where all the coefficients bk>0,l of the B-cycle eMZVs eq. (2.12) are suppressed,

each instance of the letter x is accompanied by 2πi, each instance of y by 1
2πi and each

instance of τ by 2πi. This follows from the following trivial remarks about eq. (B.8):

• The letter t can be written as t = [ y
2πi , 2πix].

• The expansion of the letter ỹ in eq. (B.3) and the factor of exp(2πiỹτ) = exp((2πiτ)ỹ)

in eq. (B.8) can be written as

ỹ = −
∑
n≥0

Bn
n!

adn2πix

( y

2πi

)
. (C.2)

Moreover, the factor of exp
(
− 2πi

τ e+

)
in eq. (B.8) does not alter the argument, because

when it acts on y
2πi it gives back x

τ = 2πix
2πiτ . Hence, the fact that the τ → i∞ asymptotics

of ωB(n1, n2, . . . , nr |τ) enter eq. (B.8) along with n1+n2+ . . .+nr letters x and r letters

y implies that the coefficient b0,l can be written as (2πi)l+n1+n2+...+nr−r times a Q-linear

combination of MZVs, where (2πi)l comes from the fact that each τ is accompanied by 2πi.

This means that all c0,l = b̃0,l/(2πi)
l are Q-linear combinations of MZVs, and concludes

the first part of the proof.

34We suppose that n1, nr 6= 1. Otherwise, the asymptotic expansion of ωA(n | − 1
τ

) would in general

involve terms proportional to log(τ) [58], but this is never the case in our context.
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C.2 The q-expansion

The second part of the proof is based on Enriquez’s differential equation satisfied by the

generating series of A-cycle eMZVs [22]. For any fixed A-cycle eMZV, it implies that

2πi
∂

∂τ
ωA(n1, . . . ,nr |τ) =n1 Gn1+1ωA(n2, . . . ,nr |τ)−nrGnr+1ωA(n1, . . . ,nr−1 |τ)

+

r∑
i=2

{
(−1)ni(ni−1+ni)Gni−1+ni+1ωA(n1, . . . ,ni−2,0,ni+1, . . . ,nr |τ) (C.3)

−
ni−1+1∑
k=0

(ni−1−k)

(
ni+k−1

k

)
Gni−1−k+1ωA(n1, . . . ,ni−2,k+ni,ni+1, . . . ,nr |τ)

+

ni+1∑
k=0

(ni−k)

(
ni−1+k−1

k

)
Gni−k+1ωA(n1, . . . ,ni−2,k+ni−1,ni+1, . . . ,nr |τ)

}
.

One can straightforwardly deduce the differential equation w.r.t. the variable 2πiτ for the

modular images (which up to powers of τ coincide with B-cycle MZVs, see eq. (2.11))

1

2πi

∂

∂τ
ωA(n1, . . . ,nr |− 1

τ ) =n1

(
(2πiτ)n1−1Ĝn1+1(τ)− δn1,1

2πiτ

)
ωA(n2, . . . ,nr |− 1

τ ) (C.4)

−nr
(

(2πiτ)nr−1Ĝnr+1(τ)− δnr,1
2πiτ

)
ωA(n1, . . . ,nr−1 |− 1

τ )

+

r∑
i=2

{
(−1)ni(ni−1+ni)(2πiτ)ni−1+ni−1Ĝni−1+ni+1(τ)ωA(n1, . . . ,ni−2,0,ni+1, . . . ,nr |− 1

τ )

−
ni−1+1∑
k=0

(ni−1−k)

(
ni+k−1

k

)
×(2πiτ)ni−1−k−1Ĝni−1−k+1(τ)ωA(n1, . . . ,ni−2,k+ni,ni+1, . . . ,nr |− 1

τ )

+

ni+1∑
k=0

(ni−k)

(
ni−1+k−1

k

)

×(2πiτ)ni−k−1Ĝni−k+1(τ)ωA(n1, . . . ,ni−2,k+ni−1,ni+1, . . . ,nr |− 1
τ )

}
,

where the Kronecker-delta terms in the first and second line follow from the exceptional

modular transformation G2(− 1
τ ) = τ2 G2(τ)− 2πiτ . We are using the normalization con-

ventions

Ĝ2k(τ) :=
G2k(τ)

(2πi)2k
=

2ζ2k

(2πi)2k
+

2

(2k−1)!

∑
m≥1

m2k−1qm

1− qm
(C.5)

for the Eisenstein series in eq. (C.4).

The right-hand side of eq. (C.4) involves A-cycle eMZVs of smaller length r−1 multi-

plied by MZV-linear combinations35 of (2πiτ)lqk with l ∈ Z and k ≥ 0. When r = 1 it is

easy to see that ωA(2m |− 1
τ ) = −2ζ2m and ωA(2m+1 |− 1

τ ) = 0 with m ≥ 0 are compatible

35We mean that the coefficients lie in the Q-algebra generated by MZVs.
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with our claim. Hence, eq. (C.4) implies by induction in r that the b̃k,l(n) in eq. (C.1) with

k > 0 can be written as (2πi)l times a Q-linear combinations of MZVs.

In view of the discussion in appendix C.1, there is no need to revisit the constant term

of the Laurent polynomial b̃0,l(n) which is annihilated by ∂τ , so this concludes the proof.

D Different flavors of iterated Eisenstein integrals

D.1 Another convention for iterated Eisenstein integrals

In this appendix we make precise how to convert the iterated Eisenstein integrals E(k) con-

sidered in the present work to the differently normalized iterated integrals γ(k) considered

in refs. [23, 24], defined for

Gk(τ) :=
∑

(m,n) 6=(0,0)

1

(m+ τn)k
= 2

(
ζk +

(2πi)k

(k − 1)!

∞∑
m,n=1

mk−1qmn
)

= 2ζk + G0
k(τ) (D.1)

when k ≥ 2 (even) and G0(τ) = G0
0(τ) = −1 as

γ(k1, k2, . . . , kr; τ) :=
1

2πi

∫ i∞

τ
dτr Gkr(τr) γ(k1, k2, . . . , kr−1; τr)

=
1

4π2

∫ q

0
dlog qr Gkr(qr) γ(k1, k2, . . . , kr−1; qr) (D.2)

=
1

(4π2)r

∫
0≤q1≤q2≤...≤qr≤q

dlog q1 Gk1(q1) dlog q2 Gk2(q2) . . . dlog qr Gkr(qr) ,

γ0(k1, k2, . . . , kr; τ) :=
1

2πi

∫ i∞

τ
dτr G0

kr(τr) γ0(k1, k2, . . . , kr−1; τr)

=
1

4π2

∫ q

0
d log qr G0

kr(qr) γ0(k1, k2, . . . , kr−1; qr) (D.3)

=
1

(4π2)r

∫
0≤q1≤q2≤...≤qr≤q

dlog q1 G0
k1(q1) dlog q2 G0

k2(q2) . . . dlog qr G0
kr(qr) .

The conversion reads

γ(k1, k2, . . . , kr; τ) = (2πi)k1+k2+···+kr−2r E(k1, k2, . . . , kr; τ) , (D.4)

γ0(k1, k2, . . . , kr; τ) = (2πi)k1+k2+···+kr−2r E0(k1, k2, . . . , kr; τ) . (D.5)

D.2 Conversion between E0 and E

Recall the generating series

Ek(Y0, Y1, . . . , Yr; τ) :=
∑

p0,p1,...,pr≥0

1

(2πi)2p0

[ r∏
i=1

(2πi)ki−2pi−1

]
(D.6)

× E(0p0 , k1, 0
p1 , . . . , kr, 0

pr ; τ)Y p0
0 Y p1

1 · · ·Y
pr
r .
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Let us introduce a lighter notation for iterated integrals: we denote the iterated integral

of the differential forms ω1(t)dt, . . . , ωr(t)dt, integrated from ωr to ω1 along a path γ ⊂ C
as
∫
γ ω1 · · ·ωr. For instance, on the straight path [0, 1] we have∫

[0,1]
ω1 · · ·ωr =

∫ 1

0
ω1(t1) dt1

∫ t1

0
ω2(t2) dt2 · · ·

∫ tr−1

0
ωr(tr) dtr , (D.7)

while on a path [τ, i∞] in the upper half plane we have∫
[τ,i∞]

ω1 · · ·ωr =

∫ i∞

τ
ωr(t1) dt1

∫ i∞

t1

ωr−1(t2) dt2 · · ·
∫ i∞

tr−1

ω1(tr) dtr . (D.8)

Let us then rewrite our generating series as

Ek(Y0, Y1, . . . , Yr; τ) =
∑

p0,p1,...,pr≥0

Y p0
0 Y p1

1 Y p2
2 · · ·Y

pr
r

(2πi)p0+p1+p2+...+pr

×
[ ∫

[τ,i∞]
G0 · · ·G0︸ ︷︷ ︸

p0

Gk1 G0 · · ·G0︸ ︷︷ ︸
p1

Gk2 · · ·Gkr G0 · · ·G0︸ ︷︷ ︸
pr

]
(D.9)

=

∫
[τ,i∞]

exp

(
t1Y0

2πi

)
Gk1(t1) exp

(
(t2−t1)Y1

2πi

)
Gk2(t2) · · ·

× · · ·Gkr−1(tr−1) exp

(
(tr−tr−1)Yr−1

2πi

)
Gkr(tr) exp

(
(τ − tr)Yr

2πi

)
,

where in the last step we have used that∫
[ti,tj ]

G0 G0 · · ·G0︸ ︷︷ ︸
p

=
(ti − tj)p

p!
(D.10)

and that (according to the regularization introduced in [59])∫
[t,i∞]

G0 · · ·G0︸ ︷︷ ︸
p

= (−1)p
∫

[0,t]
G0 · · ·G0︸ ︷︷ ︸

p

=
tp

p!
. (D.11)

Let us also introduce a modified generating series

Êk(Y1, . . . , Yr; τ) :=
∑

p1,...,pr≥0

[ r∏
i=1

(2πi)ki−2pi−1

]
E(k1, 0

p1 , . . . , kr, 0
pr ; τ)Y p1

1 · · ·Y
pr
r ,

(D.12)

where, in comparison to eq. (D.6), the iterated Eisenstein integrals E(0, . . .) with 0 in the

first entry are suppressed. It is easy to check repeating for Êk the same steps of (D.9) that

Ek(Y0, Y1, . . . , Yr; τ) = exp

(
τY0

2πi

)
Êk(Y1, . . . , Yr; τ) , (D.13)

which leads to the explicit formula

E(0p0 , k1, 0
p1 , . . . , kr, 0

pr ; τ) =
∑

t+s1+···+sr=p0

(−1)s1+···+sr (D.14)

×
( r∏
j=1

(
pj + sj
sj

))
(2πiτ)t

t!
E(k1, 0

p1+s1 , . . . , kr, 0
pr+sr ; τ) .
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Iterated Eisenstein integrals of the kind E(k1, 0
p1 , . . . , kr, 0

pr ; τ) can be written as the sum of

E0(k1, 0
p1 , . . . , kr, 0

pr ; τ) and other iterated Eisenstein integrals E ’s of strictly lower depth,36

therefore one can iteratively make use of eq. (D.14) and write any E in terms of the E0’s.

For instance, one easily gets

E(k1, 0
p1 ; τ) = E0(k1, 0

p1 ; τ)− 2ζk1
(2πi)k1

E0(0p1+1; τ) (D.15)

and

E(k1, 0
p1 , k2, 0

p2 ; τ) = E0(k1, 0
p1 , k2, 0

p2 ; τ)− 2ζk2
(2πi)k2

E0(k1, 0
p1+p2+1; τ) (D.16)

− 2ζk1
(2πi)k1

∑
s+t=p1+1

(
p2 + s

s

)
(−1)s(2πiτ)t

t!

(
E0(k2, 0

p2+s; τ)− 2ζk2
(2πi)k2

E0(0p2+s+1; τ)
)
.

The motivation to do this conversion comes from the fact that we know explicitly37 the

q-expansion of any E0, which therefore allowed us to exploit the very fast convergence of

these series and verify numerically our results and conjectures to arbitrary precision.

D.3 Conversion between E and G

The relations eq. (3.28) between the two generating series eq. (3.27) of iterated Eisenstein

integrals E and G can be proven by writing, as in the previous section,

Ek(Y0, Y1, . . . , Yr; τ) =

∫
[τ,i∞]

exp

(
t1Y0

2πi

)
Gk1(t1) exp

(
(t2−t1)Y1

2πi

)
Gk2(t2) · · · (D.17)

× · · ·Gkr−1(tr−1) exp

(
(tr−tr−1)Yr−1

2πi

)
Gkr(tr) exp

(
(τ − tr)Yr

2πi

)

as well as writing the generating series Gk in eq. (3.27) as

Gk(T1, . . . , Tr; τ) =

∫
[τ,i∞]

exp

(
t1T1

2πi

)
Gk1(t1) exp

(
t2T2

2πi

)
Gk2(t2) · · · exp

(
trTr
2πi

)
Gkr(tr)

(D.18)

by a completely similar computation.

36Recall that this was defined as the number of non-zero entries of E .
37This is a consequence of eq. (2.21) and the fact that our regularization of iterated Eisenstein integrals

yields E0(0p; τ) = E(0p; τ) = (2πiτ)p/p!.
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D.4 Examples of modular transformations

We give here one more example in depth two of a special linear combination of iterated

Eisenstein integrals which can be S-transformed with our methods:

3E(4,6,0,0,0;− 1
τ )+E(6,0,4,0,0;− 1

τ )+3E(6,4,0,0,0;− 1
τ ) =

ζ4

240
E(4;τ)− ζ3

6
E(0,6;τ)

+E(0,0,4,0,6;τ)+3E(0,0,0,4,6;τ)+3E(0,0,0,6,4;τ)− 1

T

(
− ζ5

20
E(4;τ)+

ζ4

240
E(0,4;τ)

− ζ3

2
E(0,0,6;τ)+3E(0,0,4,0,0,6;τ)+9E(0,0,0,4,0,6;τ)+18E(0,0,0,0,4,6;τ)

+3E(0,0,0,6,4;τ)+18E(0,0,0,0,6,4;τ)+
143ζ6

241920

)
− 1

T 2

( ζ5

20
E(0,4;τ)

− ζ4

480
E(0,0,4;τ)+

3ζ3

4
E(0,0,0,6;τ)− 9

2
E(0,0,4,0,0,0,6;τ)− 27

2
E(0,0,0,4,0,0,6;τ)

−27E(0,0,0,0,4,0,6;τ)−45E(0,0,0,0,0,4,6;τ)− 3

2
E(0,0,0,6,0,0,4;τ)

−12E(0,0,0,0,6,0,4;τ)−45E(0,0,0,0,0,6,4;τ)− 13ζ4ζ3

20160
+

7ζ7

1920

)
+

1

T 3

( ζ5

40
E(0,0,4;τ)+

ζ3

2
E(0,0,0,0,6;τ)−3E(0,0,4;τ)E(0,0,0,0,6;τ)− ζ3ζ5

240

)
. (D.19)

Moreover, the following iterated Eisenstein integral of depth three gives rise to the depth-

three MZV ζ3,5,3 upon modular S-transformation:

E(6,4,4;− 1
τ ) =

1

8(2πi)8

[
533ζ3ζ8

4050
− 4ζ3ζ3,5

225
− 4ζ5ζ

2
3

45
− 4ζ3,5,3

225
− 221ζ11

5400

+

(
16ζ5ζ3

15
− 503ζ8

675
+

16ζ3,5

75

)
E(02,4;τ)− 16ζ5

5

[
E(02,4;τ)

]2
+80640E(07,6,4,0,4;τ)+69120E(06,6,02,4,4;τ)+23040E(05,6,03,4,4;τ)

+768E(04,6,02,4,02,4;τ)+161280E(07,6,0,4,4;τ)+11520E(06,6,4,02,4;τ)

+34560E(06,6,0,4,0,4;τ)+11520E(05,6,02,4,0,4;τ)+2304E(04,6,03,4,0,4;τ)

+4608E(04,6,04,4,4;τ)+322560E(08,6,4,4;τ)+3840E(05,6,0,4,02,4;τ)

]
. (D.20)

E A-cycle graph functions at weight five

Among the six A-cycle graph functions at weight five, two examples have been spelt out

in terms of eMZVs in eqs. (3.23) and (3.24), and the remaining four are given by

A
[ ]

= 8ζ5+
8

5
ωA(0,5)+32ωA(0,0,0,5)−20ωA(0,0,2,3)+

10

3
ωA(0,0,2)ωA(0,0,3,0)

+120ωA(0,3)ωA(0,0,0,0,2)−312ωA(0,0,0,0,0,5)+120ωA(0,0,0,0,1,4)

+5ζ3ωA(0,0,2)−12ζ2ωA(0,3)−80ζ2ωA(0,0,2)ωA(0,0,1,0)+
25

9
ζ2ωA(0,0,3,0)

+480ζ2ωA(0,0,0,0,0,3)−960ζ2ωA(0,0,0,0,1,2)+
265

6
ζ2ζ3

+
412

3
ζ4ωA(0,0,1,0)+192ζ4ωA(0,0,0,1,0,0) (E.1)
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A
[ ]

=
7ζ5
80

+
87

400
ωA(0,5)+

77

20
ωA(0,0,0,5)− 5

2
ωA(0,0,2,3)+ωA(0,0,2)ωA(0,0,3,0)

+15ωA(0,3)ωA(0,0,0,0,2)− 381

10
ωA(0,0,0,0,0,5)+15ωA(0,0,0,0,1,4)

− 7

10
ζ2ωA(0,3)−6ζ2ωA(0,0,2)ωA(0,0,1,0)

+
3

2
ζ2ωA(0,0,3,0)+36ζ2ωA(0,0,0,0,0,3)

−48ζ2ωA(0,0,0,0,1,2)+2ζ2ζ3+
47

10
ζ4ωA(0,0,1,0)+

48

5
ζ4ωA(0,0,0,1,0,0) (E.2)

A
[ ]

=
3ζ5
20

+
3

100
ωA(0,5)+

19

15
ωA(0,0,0,5)− 2

3
ωA(0,0,2,3)+4ωA(0,3)ωA(0,0,0,0,2)

− 58

5
ωA(0,0,0,0,0,5)+4ωA(0,0,0,0,1,4)− 1

3
ζ2ωA(0,3)+

14

9
ζ2ωA(0,0,3,0)

+32ζ2ωA(0,0,0,0,0,3)−8ζ2ωA(0,0,0,0,1,2)+
1

3
ζ2ζ3

− 4

5
ζ4ωA(0,0,1,0)− 352

5
ζ4ωA(0,0,0,1,0,0) (E.3)

A
[ ]

=
ζ5
60
− 7

900
ωA(0,5)+

1

15
ωA(0,0,0,5)− 2

5
ωA(0,0,0,0,0,5)+

1

10
ζ2ωA(0,3)

+
1

3
ζ2ωA(0,0,3,0)+12ζ2ωA(0,0,0,0,1,2)− 1

2
ζ2ζ3−

103

15
ζ4ωA(0,0,1,0)

+
132

5
ζ4ωA(0,0,0,1,0,0) . (E.4)

F Relations between modular graph functions at weight six

In this appendix, we collect the complete set of relations among modular graph functions

of weight six as given in [11]:

0 = D
[ ]

− 15 D
[ ]

D
[ ]

+ 30 D
[ ]3

− 10 D
[ ]2

− 60 D
[ ]

+ 720 D
[ ]

+ 240 D
[ ]

D
[ ]

− 720 D
[ ]

D
[ ]

− 1440 D
[ ]2

− 5280 D
[ ]

+ 360 D
[ ]

D
[ ]

− 1280 D
[ ]

+ 3380 D
[ ]

0 = 2 D
[ ]

+ 3 D
[ ]

− 9 D
[ ]

D
[ ]

− 6 D
[ ]2

− 18 D
[ ]

− 24 D
[ ]

− 2 D
[ ]

+ 32 D
[ ]

0 = −3 D
[ ]

+ 109 D
[ ]

+ 408 D
[ ]

+ 36 D
[ ]

+ 18 D
[ ]

D
[ ]

+ 12 D
[ ]

D
[ ]

− 211 D
[ ]

0 = 3 D
[ ]

− 18 D
[ ]

− 58 D
[ ]

− 192 D
[ ]

− 3 D
[ ]3

+ 24 D
[ ]2

+ 18 D
[ ]

D
[ ]

+ 46 D
[ ]

(F.1)

0 = 2 D
[ ]

+ 18 D
[ ]

− 36 D
[ ]

− 69 D
[ ]

− 288 D
[ ]

− 6 D
[ ]

D
[ ]

− 18 D
[ ]

D
[ ]

− 36 D
[ ]2

+ 183 D
[ ]

0 = 3 D
[ ]

+ 6 D
[ ]

− 10 D
[ ]

− 48 D
[ ]

− 12 D
[ ]

− 6 D
[ ]

D
[ ]

− 12 D
[ ]2

+ 40 D
[ ]
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0 = 18 D
[ ]

− 9 D
[ ]

− 20 D
[ ]

− 60 D
[ ]

+ 9 D
[ ]

D
[ ]

+ 18 D
[ ]2

− 10 D
[ ]

0 = 3 D
[ ]

−D
[ ]

− 12 D
[ ]

+ 4 D
[ ]

.

G Explicit modular graph forms and modular graph functions

In this appendix we gather explicit representations of all the modular graph forms and

modular graph functions which appear in the Cauchy-Riemann equations up to weight six

and have not been spelt out in the main text.

G.1 Cauchy Riemann derivatives

In order to supplement the discussion of the Cauchy-Riemann equations in section 4.2.3,

all the modular graph forms on their right-hand side will be spelt out in this subsection.

Starting from the expression eq. (2.34) for non-holomorphic Eisenstein series, repeated

action of the Cauchy-Riemann derivative eq. (2.56) gives rise to

π∇E2 =
2y3

45
−ζ3+24y2E0(4)+12yE0(4,0)+6Re[E0(4,0,0)] (G.1)

π∇E3 =
2y4

315
− 3ζ5

2y
+240y2E0(6,0)+360yE0(6,0,0)+180E0(6,0,0,0) (G.2)

+180Re[E0(6,0,0,0)]+
180Re[E0(6,0,0,0,0)]

y

(π∇)2 E3 =
8y5

315
+

3ζ5
2
−960y4E0(6)−960y3E0(6,0)−720y2E0(6,0,0) (G.3)

−360yE0(6,0,0,0)−180Re[E0(6,0,0,0,0)]

π∇E4 =
4y5

4725
− 15ζ7

8y2
+3360y2E0(8,02)+10080yE0(8,03)+12600E0(8,04) (G.4)

+
6300E0(8,05)

y
+5040Re[E0(8,04)]+

12600Re[E0(8,05)]

y
+

9450Re[E0(8,06)]

y2

(π∇)2 E4 =
4y6

945
+

15ζ7
4y
−13440y4E0(8,0)−33600y3E0(8,02)−50400y2E0(8,03) (G.5)

−50400yE0(8,04)−25200E0(8,05)−12600Re[E0(8,05)]− 18900Re[E0(8,06)]

y

(π∇)3 E4 =
8y7

315
− 15ζ7

4
+53760y6E0(8)+80640y5E0(8,0)+100800y4E0(8,02) (G.6)

+100800y3E0(8,03)+75600y2E0(8,04)+37800yE0(8,05)+18900Re[E0(8,06)] .

At depth two, the Cauchy-Riemann derivative of the modular graph function E2,2 in

eq. (4.44) is given by

π∇E2,2 =− 2y5

10125
+
y2ζ3

45
− 5ζ5

12
+
ζ2

3

2y
+
(4y3

15
−6ζ3

)
E0(4,0)−

(2y2

15
+

6ζ3

y

)
Re[E0(4,0,0)]

+
2y2

5
E0(4,0,0)+36yE0(4,0)2+36E0(4,0)Re[E0(4,0,0)]+

18Re[E0(4,0,0)]2

y

+144y2E0(4,4,0)+72y
(
E0(4,4,0,0)+ 1

360 E0(4,0,0,0)
)

+36Re[E0(4,0,4,0,0)+3E0(4,4,0,0,0)+ 1
360 E0(4,0,0,0,0)] , (G.7)

which enters on the right-hand side of the differential equation (4.40) for E2,2,2.
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G.2 Modular graph functions at weight six

Using the method in section 4.2.2, the Cauchy-Riemann equations (4.37) to (4.39) give rise

to the following expressions for E′3,3 and E2,4, respectively.

E′3,3 = − y6

18753525
+

yζ5
630

+
3ζ7

160y
− 7ζ9

480y3
−
(

4y2

105
− 9ζ5

y3

)
Re[E0(6, 0, 0, 0)]

− 540 Re[E0(6, 0, 0, 0)]2

y2
− 1080 Re[E0(6, 0, 0, 0)] Re[E0(6, 0, 0, 0, 0)]

y3

− 4y

21
Re[E0(6, 0, 0, 0, 0)]− 1440 Re[E0(6, 0, 6, 0, 0, 0)]− 11

21
Re[E0(6, 0, 0, 0, 0, 0)]

− 2160 Re[E0(6, 0, 0, 6, 0, 0, 0)]

y
− 4320 Re[E0(6, 0, 6, 0, 0, 0, 0)]

y

− 13 Re[E0(6, 0, 0, 0, 0, 0, 0)]

14y
− 1080 Re[E0(6, 0, 0, 0, 6, 0, 0, 0)]

y2
(G.8)

− 2160 Re[E0(6, 0, 0, 6, 0, 0, 0, 0)]

y2
+

10800 Re[E0(6, 6, 0, 0, 0, 0, 0, 0)]

y2

− Re[E0(6, 0, 0, 0, 0, 0, 0, 0)]

y2
+

1080 Re[E0(6, 0, 0, 0, 6, 0, 0, 0, 0)]

y3

+
5400 Re[E0(6, 0, 0, 6, 0, 0, 0, 0, 0)]

y3
+

16200 Re[E0(6, 0, 6, 0, 0, 0, 0, 0, 0)]

y3

+
37800 Re[E0(6, 6, 0, 0, 0, 0, 0, 0, 0)]

y3
− Re[E0(6, 0, 0, 0, 0, 0, 0, 0, 0)]

2y3

E2,4 =− y6

70875
+
y3ζ3
525

+
3ζ7
40y

+
25ζ9
8y3
− 135ζ3ζ7

32y4
−
(

2y3

175
− 405ζ7

16y4

)
Re[E0(4,0,0)]

−
(

504y− 11340ζ3
y2

)
Re[E0(8,0,0,0,0)]−

(
2520− 28350ζ3

y3

)
Re[E0(8,0,0,0,0,0)]

−
(

5670

y
− 42525ζ3

2y4

)
Re[E0(8,0,0,0,0,0,0)]− 68040Re[E0(4,0,0)]Re[E0(8,0,0,0,0)]

y2

− 170100Re[E0(4,0,0)]Re[E0(8,0,0,0,0,0)]

y3
− 127575Re[E0(4,0,0)]Re[E0(8,0,0,0,0,0,0)]

y4

−45360Re[E0(8,0,0,4,0,0)]−136080Re[E0(8,0,4,0,0,0)]−272160Re[E0(8,4,0,0,0,0)]

−272160Re[E0(4,8,0,0,0,0)]− 3

20
Re[E0(4,0,0,0,0,0)]− 136080Re[E0(4,0,8,04)]

y

− 1360800Re[E0(4,8,05)]

y
− 9Re[E0(4,06)]

20y
− 136080Re[E0(8,03,4,02)]

y
(G.9)

− 408240Re[E0(8,02,4,03)]

y
− 816480Re[E0(8,0,4,04)]

y
− 1360800Re[E0(8,4,05)]

y

− 340200Re[E0(4,0,8,05)]

y2
− 2551500Re[E0(4,8,06)]

y2
− 9Re[E0(4,07)]

16y2

− 170100Re[E0(8,04,4,02)]

y2
− 510300Re[E0(8,03,4,03)]

y2
− 1020600Re[E0(8,02,4,04)]

y2

− 1701000Re[E0(8,0,4,05)]

y2
− 2551500Re[E0(8,4,06)]

y2
− 6615Re[E0(8,07)]

y2
− 9Re[E0(4,08)]

32y3

− 255150Re[E0(4,0,8,06)]

y3
− 1786050Re[E0(4,8,07)]

y3
− 85050Re[E0(8,05,4,02)]

y3

− 255150Re[E0(8,04,4,03)]

y3
− 510300Re[E0(8,03,4,04)]

y3
− 850500Re[E0(8,02,4,05)]

y3

− 1275750Re[E0(8,0,4,06)]

y3
− 1786050Re[E0(8,4,07)]

y3
− 6615Re[E0(8,08)]

2y3

The contributing expressions for ∇E3 and ∇j=1,2,3E4 can be found in the previous subsec-

tion.
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